
Description of S-Score: Expression Analysis of
Affymetrix GeneChips from Probe-Level Data

Richard E. Kennedy, Kellie J. Archer,
Robnet T. Kerns, and Michael F. Miles

April 21, 2009

Contents

1 Introduction 2

2 What’s new in this version 2

3 Reading in data and generating S-Scores 2

4 Multichip comparisons 4

5 Multiple pairwise comparisons 5

6 Using S-Scores in gene expression analysis 7

7 Computing scale factor and statistical difference threshold 7

8 Identifying outliers 8

9 Changes from the stand-alone version 9

10 Version history 10

11 Acknowledgements 10

1



1 Introduction

The S-Score algorithm described by Zhang et al. (2002) and Kerns et al. (2003) is a novel
comparative method for gene expression data analysis that performs tests of hypotheses
directly from probe level data. It is based on a new error model in which the detected
signal is assumed to be proportional to the probe pair signal for highly expressed genes,
but assumed to approach a background level (rather than 0) for genes with low levels
of expression. This model is used to calculate relative change in probe pair intensities
that converts probe signals into multiple measurements with equalized errors, which
are summed over a probe set to form the significance score (S-Score). Assuming no
expression differences between chips, the S-Score follows a standard normal distribution.
Thus, p-values can be easily calculated from the S-Score, and a separate step estimating
the probe set expression summary values is not needed. Furthermore, in comparisons of
dilution and spike-in microarray datasets, the S-Score demonstrated greater sensitivity
than many existing methods, without sacrificing specificity (Kennedy et al., 2006a).
The sscore package (Kennedy et al., 2006b) implements the S-Score algorithm in the R
programming environment, making it available to users of the Bioconductor1 project.

2 What’s new in this version

This release has minor changes for compatibility with the ExpressionSet data class, as
well as minor bug fixes.

3 Reading in data and generating S-Scores

Affymetrix data are generated from GeneChips® by analyzing the scanned image of the
chip (stored in a *.DAT file) to produce a *.CEL file. The *.CEL file contains, among
other information, a decimal number for each probe on the chip that corresponds to its
intensity. The S-Score algorithm compares two GeneChips by combining all of the probe
intensities from a probeset (typically 11 to 20) into a single summary statistic for each
gene. The sscore package processes the data obtained from *.CEL files, which must be
loaded into R prior to calling the SScore function. Thus, the typical sequence of steps
to accomplish this is as follows:

1. Create a directory containing all *.CEL files relevant to the planned analysis.

2. If using Linux / Unix, start R in that directory.

3. If using the Rgui for Microsoft Windows, make sure your working directory contains
the *.CEL files (use “File -> Change Dir” menu item).

1http://www.bioconductor.org/

2

http://www.bioconductor.org/


4. Load the library.

> library(sscore)

> options(width = 60)

> library(affydata)

5. Read in the data and create an expression set.

Both of the functions SScore and SScoreBatch operate on an AffyBatch object
containing all of the relevant information from the *.CEL files. Additional information
regarding the ReadAffy function and detailed description of the structure of *.CEL files
can be found in the affy vignette. Note that, even though the intensities have been
loaded into R, SScore will still need direct access to the *.CEL files later to obtain the
information about outliers. If a copy of the *.CEL files is not available when
SScore is called, an error may result.

The SScore and SScoreBatch functions return an object of class ExpressionSet.
(The class ExpressionSet is described in the Biobase vignette.) The S-Score values are
returned in the exprs slot. The following examples illustrate the sscore package with
the results of the S-Score analysis for the Dilution data set included with the affydata
package. Due to the nature of this dataset, *.CEL files are not included and computation
fo the SF and SDT data (as described below) cannot be performed.

A basic S-Score analysis is generated using the SScore function:

> data(Dilution)

> pathname <- system.file("doc", package = "sscore")

> cel <- Dilution[, c(1, 3)]

> SScore.basic <- SScore(cel, celfile.path = pathname,

+ SF = c(4.46, 5.72), SDT = c(57.241, 63.581),

+ rm.extra = FALSE)

and the first few S-Score values are

> exprs(SScore.basic)[1:20]

[1] -0.142922922 -0.456881232 1.201785056 1.167657431

[5] -0.644052314 -0.918102279 -0.151458708 0.004924887

[9] 1.397271888 -2.135317520 -0.621832098 0.208387200

[13] 0.771029168 0.743589518 1.680697421 0.591378144

[17] -1.488923283 -1.723861195 -1.064468884 0.323086069

Optional parameters for SScore include:

celfile.path – character string giving the directory in which the *.CEL files are stored.
If a directory is not specified, the current working directory is used.

3



celfile.names – character vector giving the filenames of the *.CEL files corresponding
to the columns of the AffyBatch object. If filenames are not specified, the sample
names of the AffyBatch object are used.

SF, SDT – the Scale Factor and Standard Difference Threshold. Each is a vector with
length equal to the number of columns in the AffyBatch object, and contains a
numeric value for each chip. The Scale Factor is used to scale each intensity to
a target background value, with the default of 500 (as used by the Affymetrix
GeneChip Operating Software [GCOS]). The Standard Difference Threshold is
used as an estimate of background noise, and is equal to the standard deviation
for the lowest 2% of intensities on a chip. These values are available from the
Affymetrix GCOS output, or may be calculated by the SScore function.

rm.outliers, rm.mask, rm.extra – These are logical values used to exclude certain
probes from the S-Score calculations. These options perform the same as they do in
the ReadAffy function, which it calls. rm.outliers excludes all probes designated
as outliers in the *.CEL file. rm.mask excludes all probes designated as masked
in the *.CEL file. rm.extra removes both outlier and mask probes, and overrides
rm.outliers and rm.mask if these are specified.

digits – a numeric value that specifies the number of significant decimal places for the
S-Score and CorrDiff values, which are rounded as needed. The default uses full
precision with no rounding. The output from the stand-alone version of the S-Score
uses digits=3.

verbose – a logical value indicating whether additional information on the analyses is
printed. This includes the chip type, sample names, values of alpha and gamma,
and the SF and SDT values.

4 Multichip comparisons

Beginning with release 1.7.0, the SScore function is capable of comparing two classes
where each class includes replicates. As with previous releases, only two class compar-
isons are available. The multichip comparisons are performed by adding a classlabel

vector which distinguishes classes, similar to that of the multtest package. The vec-
tor classlabel describes to which class each GeneChip belongs. Its length is equal to
the number of chips being compared, with each element containing either a 0 or a 1,
indicating class assignment. Thus, the assignment

> labels <- c(0, 0, 0, 1, 1, 1)

would compare the first three chips to the last three chips. (Note that the number
of chips in the two classes being compared do not have to be equal.) If the classlabel

4



parameter is not specified, it defaults to a two-chip comparison for compatibility with
previous versions of SScore.

An example of a multichip S-Score comparison would be

> data(Dilution)

> pathname <- system.file("doc", package = "sscore")

> cel <- Dilution

> SScore.multi <- SScore(cel, classlabel = c(0,

+ 0, 1, 1), SF = c(4.46, 6.32, 5.72, 9.22),

+ SDT = c(57.241, 53.995, 63.581, 69.636), celfile.path = pathname,

+ rm.extra = FALSE)

and the first few S-Score values are

> exprs(SScore.multi)[1:20]

[1] 0.5236953 0.6243332 1.7195570 0.9667666 -0.2993475

[6] -0.9249448 1.5786197 -0.1658512 2.1431512 -2.7207101

[11] -0.4010540 0.5503606 0.6283698 1.1199451 1.3237946

[16] 0.7159979 -1.7620347 -1.7987401 -0.3079212 0.5429998

The other parameters of SScore remain unchanged. The output data from the
multichip comparison are still standard S-Scores, i.e., they still follow a Normal(0,1)
distribution and may be converted to p-values as described below.

5 Multiple pairwise comparisons

Previous versions of the SScore function calculated the S-Score values for one pair
of chips (i.e. a single two-chip comparison). However, for many experiments, several
chips need to be compared. This can be done using the SScoreBatch function, which
automates the process of making several two-chip comparisons. The setup and options
for SScoreBatch are very similar to SScore.

The SScoreBatch function has an additional parameter, the compare matrix, which
specifies the pairs of chips to compare. It is an N x 2 matrix, where N is the number
of comparisons being made. Each row contains the column number of the chips in the
AffyBatch object that are being compared. For example, if the compare matrix is set
up as

[1,] [2,]

[,1] 2 5

[,2] 2 6

[,3] 5 9

[,4] 10 2

5



[,5] 5 7

[,6] 10 8

[,7] 9 4

[,8] 1 2

[,9] 3 10

The first comparison made is between the chips in columns 2 and 5 of the AffyBatch

object; the second comparison made is between the chips in columns 2 and 6; the third
comparison made is between the chips in columns 5 and 9; and so forth. If the compare

matrix has more than two columns, only the first two columns will be used for identifying
the GeneChips in the AffyBatch object to be compared.

Each column of eset will contain the results of a single two-chip comparison. The
first column of eset will contain the comparison corresponding to the first row of the
compare matrix, the second column of eset will contain the comparison corresponding
to the second row of the compare matrix, and so forth.

A basic S-Score analysis using SScoreBatch is generated using the commands:

> data(Dilution)

> pathname <- system.file("doc", package = "sscore")

> compare <- matrix(c(1, 2, 1, 3, 1, 4), ncol = 2,

+ byrow = TRUE)

> SScoreBatch.basic <- SScoreBatch(Dilution, compare = compare,

+ SF = c(4.46, 6.32, 5.72, 9.22), SDT = c(57.241,

+ 53.995, 63.58, 169.636), celfile.path = pathname,

+ rm.extra = FALSE)

and the first few S-Score values are

> exprs(SScoreBatch.basic)[1:10, ]

Chip 1 vs 2 Chip 1 vs 3 Chip 1 vs 4

100_g_at 0.47475448 -0.143237298 1.580114296

1000_at 0.02470422 -0.457308566 2.069884875

1001_at -0.35329047 1.201978543 1.029368680

1002_f_at 0.93159010 1.167838856 1.037607850

1003_s_at 0.11736867 -0.644545046 0.009928982

1004_at 0.68014346 -0.918701637 0.088110534

1005_at -2.08584651 -0.151773936 0.883104329

1006_at 0.54733837 0.004665505 0.333656840

1007_s_at 0.16752329 1.397538814 2.106257809

1008_f_at 0.70457816 -2.136371809 -1.456303050

Other parameters for SScoreBatch are identical to SScore.

6



6 Using S-Scores in gene expression analysis

Under conditions of no differential expression, the S-Scores follow a standard normal
(Gaussian) distribution with a mean of 0 and standard deviation of 1. This makes it
straightforward to calculate p-values corresponding to rejection of the null hypothesis
and acceptance of the alternative hypothesis of differential gene expression. Cutoff values
for the S-Scores can be set to achieve the desired level of significance. As an example,
an absolute S-Score value of 3 (signifying 3 standard deviations from the mean, a typical
cutoff value) would correspond to a p-value of 0.003. Under this scenario, the significant
genes can be found as:

> sscores <- exprs(SScore.basic)

> signif <- geneNames(Dilution)[abs(sscores) >=

+ 3]

Similarly, the p-values can be calculated as:

> sscores <- exprs(SScore.basic)

> p.values.1 <- 1 - pnorm(abs(sscores))

> p.values.2 <- 2 * (1 - pnorm(abs(sscores)))

The S-Score algorithm does account for the correlations among probes within a two-
chip comparison. However, it does not adjust p-values for multiple comparisons when
comparing more than one pair of chips.

7 Computing scale factor and statistical difference

threshold

The SScore and SScoreBatch functions call the function computeSFandSDT to compute
the values for the Scale Factor (SF) and Statistical Difference Threshold (SDT) if these
are not supplied by the user. computeSFandSDT is an internal function that generally
will not be called or modified.

The calculations for the SF and SDT are performed as described in the Affymetrix
Statistical Algorithms Description Document (Affymetrix, 2002) and implemented in
the Affymetrix (using SDT = 4 * RawQ * SF). The calculation of these values can be
both time- and memory-intensive; it is recommended that the user supply these values
from the Affymetrix MAS5 or GCOS Metrics table whenever possible. Alternatively,
computeSFandSDT may be called directly to obtain the SF and SDT values for each
*.CEL file, which are then supplied by the user in subsequent calls to SScore. The
calculations for each *.CEL file are independent. If memory is not sufficient to allow
computation of all SF and SDT values simultaneously, the *.CEL files may be broken
into smaller batches; identical results will be obtained either way.

7



In addition to computing the specified values, computeSFandSDT may be used to
generate histograms of the log intensities for the chips being compared. Such plots are
useful for identifying potentially problematic chips prior to analysis. It may also be
used to display additional information about the *.CEL file parameters. The options for
computeSFandSDT are

TGT – a numeric value for the target intensity to which the arrays should be scaled.

verbose – a logical value indicating whether additional information on the calculations
is printed. This includes the SF, SDT, and RawQ values, as well as descriptive
statistics on the background and noise. This is similar to the information provided
by the Affymetrix GCOS Metrics table for the *.CEL file.

plot.histogram – a logical value indicating whether a histogram should be plotted.
Both the PM and MM log intensities will be shown in a single graphics window.
Separate plots will be generated for each chip being analyzed.

digits – a numeric value that specifies the number of significant decimal places for the
SF and SDT values, which are rounded as needed. Using digits=3 rounds to the
same number of digits as the stand-alone version of the S-Score.

celfile.path – character string specifying the directory for *.CEL files

computeSFandSDT requires that the *.CEL files be in text format. The alternate
function computeAffxSFandSDT expects information obtained from the affxparser rou-
tines, so that either text or binary files may be used. In addition to the options for
computeSFandSDT, computeAffxSFandSDT has the following required parameters:

stdvs – a vector of standard deviations of the probe intensities (which can be read using
the readStdvs=TRUE option in the affxparser function readCel).

pixels – a vector of the number of pixels used in calculating the probe intensity (which
can be read using the readStdvs=TRUE option in the affxparser function readCel).

8 Identifying outliers

The current version of the SScore and SScoreBatch functions use the information con-
tained in the *.CEL files to flag probes as outliers that should be excluded from the S-
Score calculation. In previous versions, this was accomplished using the computeOutlier
function, which is retained for compatibility. This is an internal function that gener-
ally will not be called or modified. The computeOutlier function was called if the
rm.outliers, rm.mask, or rm.extra parameters of SScore or SScoreBatch are set to
TRUE. These parameters work as described in the affy documentation since they are
passed to the ReadAffy function to identify outlier and mask probes. The return value

8



from computeOutlier is a logical matrix the same size and order as the intensity ma-
trix for the AffyBatch object. Each cell of the logical matrix contains a TRUE value
if the corresponding intensity is identified as an outlier and excluded from the S-Score
calculation; otherwise it contains FALSE.

9 Changes from the stand-alone version

The S-Score algorithm has been previously implemented as a stand-alone executable
for the Windows operating system, using Borland Delphi. This version has been avail-
able from the Miles Laboratory at http://www.brainchip.vcu.edu/expressionda.

htm. Users of the stand-alone version will notice small differences in results compared to
the sscore package as it is implemented in R, though these should not significantly affect
inferences regarding gene expression. The following lists identifies differences between
the two implementations:

1. The stand-alone version excludes outlier, masked, and modified intensities from
calculations when using *.CEL files. When using *.CSV files, the stand-alone pro-
gram also excludes outlier, masked, and modified intensities if the corresponding
*.CEL file is present for obtaining this information. (The *.CSV file does not
contain any information about which intensities are outlier, masked, or modified.)
The default for the R package is not to exclude outlier, masked, or modified in-
tensities, though this may be changed using various options. Note that, due to
the way the affy package is implemented, it is not possible to exclude modified
intensities using the sscore package.

2. The rounding methods are not identical for Borland Delphi and R, which can lead
to slight differences in calculations. The difference is negligible for most of the
S-Score calculations, and should be less than or equal to 0.001.

3. The SF and SDT calculations in the stand-alone version are performed using an
independently developed algorithm. The original C++ version uses natural loga-
rithms, while the Delphi version uses base 10 logarithm. The sscore package uses
a ported version of the Affymetrix algorithms described on the Affymetrix website
http://www.affymetrix.com under Support -> Developer’s Network -> Open
Source -> MAS5 Stat SDK. Base 2 logarithms are used for these calculations.

A Java version of the S-Score algorithm is also under development. Differences
between the Java version and the sscore package will be included after the Java version
is released.

9

http://www.brainchip.vcu.edu/expressionda.htm
http://www.brainchip.vcu.edu/expressionda.htm
http://www.affymetrix.com


10 Version history

1.7.0 added routines to compute S-Scores for replicate chips within a 2-class comparison.
Also updated functions to operate on the new ExpressionSet class, and changed
routines for reading of binary *.CEL files from affxparser to affyio due to stability
problems with the former on the Macintosh PowerPC platform.

1.5.4 incorporated routines from the affxparser package for reading of binary *.CEL
files. Added option to specify *.CEL file names in the SScore and SScoreBatch

functions.

1.4.2 corrected a bug resulting in too many open file handles for large AffyBatch ob-
jects.

1.4.1 corrected a bug in assigning column names to exprSet object

1.4.0 first public release

1.0.0 initial development version

11 Acknowledgements

The development of the S-Score algorithm and its original implementation in C++ is
the work of Dr. Li Zhang. The Delphi implementation of the S-Score algorithm is the
work of Dr. Robnet Kerns. This work was partly supported by NLM F37 training grant
LM008728 to Richard E. Kennedy and NIAAA research grant AA13678 to Michael F.
Miles.

References

Affymetrix. Statistical Algorithms Description Document. Technical report, Affymetrix,
2002.

Richard E. Kennedy, Kellie J. Archer, and Michael F. Miles. Empirical validation of the
S-Score algorithm in the analysis of gene expression data. BMC Bioinformatics, 7:
154, 2006a.

Richard E. Kennedy, Robnet T. Kerns, Xiangrong Kong, Kellie J. Archer, and Michael F.
Miles. SScore: An R package for detecting differential gene expression without gene
expression summaries. Bioinformatics, 22(10):1272–1274, 2006b.

Robnet T. Kerns, Li Zhang, and Michael F. Miles. Application of the S-Score algorithm
for analysis of oligonucleotide microarrays. Methods, 31(3):274–281, 2003.

10



Li Zhang, Long Wang, Ajay Ravindranathan, and Michael F. Miles. A new algorithm for
analysis of oligonucleotide arrays: Application to expression profiling in mouse brain
regions. Journal of Molecular Biology, 317(3):225–235, 2002.

11


	Introduction
	What's new in this version
	Reading in data and generating S-Scores
	Multichip comparisons
	Multiple pairwise comparisons
	Using S-Scores in gene expression analysis
	Computing scale factor and statistical difference threshold
	Identifying outliers
	Changes from the stand-alone version
	Version history
	Acknowledgements

