sva

DOI:10.18129/B9.bioc.sva

This package is for version 3.10 of Bioconductor; for the stable, up-to-date release version, seesva.

Surrogate Variable Analysis

Bioconductor version: 3.10

The sva package contains functions for removing batch effects and other unwanted variation in high-throughput experiment. Specifically, the sva package contains functions for the identifying and building surrogate variables for high-dimensional data sets. Surrogate variables are covariates constructed directly from high-dimensional data (like gene expression/RNA sequencing/methylation/brain imaging data) that can be used in subsequent analyses to adjust for unknown, unmodeled, or latent sources of noise. The sva package can be used to remove artifacts in three ways: (1) identifying and estimating surrogate variables for unknown sources of variation in high-throughput experiments (Leek and Storey 2007 PLoS Genetics,2008 PNAS), (2) directly removing known batch effects using ComBat (Johnson et al. 2007 Biostatistics) and (3) removing batch effects with known control probes (Leek 2014 biorXiv). Removing batch effects and using surrogate variables in differential expression analysis have been shown to reduce dependence, stabilize error rate estimates, and improve reproducibility, see (Leek and Storey 2007 PLoS Genetics, 2008 PNAS or Leek et al. 2011 Nat. Reviews Genetics).

Author: Jeffrey T. Leek , W. Evan Johnson , Hilary S. Parker , Elana J. Fertig , Andrew E. Jaffe , John D. Storey , Yuqing Zhang , Leonardo Collado Torres

Maintainer: Jeffrey T. Leek , John D. Storey , W. Evan Johnson

Citation (from within R, entercitation("sva")):

Installation

To install this package, start R (version "3.6") and enter:

if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install("sva")

For older versions of R, please refer to the appropriateBioconductor release.

Documentation

查看文档的版本包age installed in your system, start R and enter:

browseVignettes("sva")

PDF R Script sva tutorial
PDF Reference Manual

Details

biocViews BatchEffect,ImmunoOncology,Microarray,MultipleComparison,Normalization,Preprocessing,RNASeq,Sequencing,Software,StatisticalMethod
Version 3.34.0
In Bioconductor since BioC 2.9 (R-2.14) (8.5 years)
License Artistic-2.0
Depends R (>= 3.2),mgcv,genefilter,BiocParallel
Imports matrixStats, stats, graphics, utils,limma
LinkingTo
Suggests pamr,bladderbatch,BiocStyle,zebrafishRNASeq,testthat
SystemRequirements
Enhances
URL
Depends On Me rnaseqGene,SCAN.UPC
Imports Me ASSIGN,ballgown,BatchQC,bnbc,ChAMP,crossmeta,DaMiRseq,debrowser,DeSousa2013,doppelgangR,edge,ExpressionNormalizationWorkflow,flowSpy,KnowSeq,LINC,MAGeCKFlute,omicRexposome,PAA,proBatch,PROPS,qsmooth,singleCellTK,TCGAbiolinks,trigger
Suggests Me CAGEWorkflow,curatedBladderData,curatedCRCData,curatedOvarianData,Harman,iasva,RnBeads,SomaticSignatures
Links To Me
Build Report

Package Archives

Follow2021年欧洲杯比分预测 instructions to use this package in your R session.

Source Package sva_3.34.0.tar.gz
Windows Binary sva_3.34.0.zip
Mac OS X 10.11 (El Capitan) sva_3.34.0.tgz
Source Repository git clone https://git.bioconductor.org/packages/sva
Source Repository (Developer Access) git clone git@git.bioconductor.org:packages/sva
Package Short Url //www.andersvercelli.com/packages/sva/
Package Downloads Report Download Stats

Documentation»

Bioconductor

R/CRANpackages anddocumentation

Support»

Please read theposting guide. Post questions about Bioconductor to one of the following locations: