## ----设置,包括= false ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ knitr::opts_chunk$set(echo = TRUE, message = FALSE) ## ---- echo=FALSE, results='hide'---------------------------------------------- library(GENESIS) library(GWASTools) # file path to GDS file gdsfile <- system.file("extdata", "HapMap_ASW_MXL_geno.gds", package="GENESIS") # read in GDS data HapMap_geno <- GdsGenotypeReader(filename = gdsfile) # create a GenotypeData class object HapMap_genoData <- GenotypeData(HapMap_geno) # load saved matrix of KING-robust estimates data("HapMap_ASW_MXL_KINGmat") # run PC-AiR mypcair <- pcair(HapMap_genoData, kinobj = HapMap_ASW_MXL_KINGmat, divobj = HapMap_ASW_MXL_KINGmat, verbose = FALSE) mypcs <- mypcair$vectors[,1,drop=FALSE] # create a GenotypeBlockIterator object HapMap_genoData <- GenotypeBlockIterator(HapMap_genoData) # run PC-Relate mypcrel <- pcrelate(HapMap_genoData, pcs = mypcs, training.set = mypcair$unrels, verbose = FALSE) # generate a phenotype set.seed(4) pheno <- 0.2*mypcs + rnorm(mypcair$nsamp, mean = 0, sd = 1) ## ----------------------------------------------------------------------------- # mypcair contains PCs from a previous PC-AiR analysis # pheno is a vector of Phenotype values # make a data.frame mydat <- data.frame(scanID = mypcair$sample.id, pc1 = mypcair$vectors[,1], pheno = pheno) head(mydat) # make ScanAnnotationDataFrame scanAnnot <- ScanAnnotationDataFrame(mydat) scanAnnot ## ---- eval=FALSE-------------------------------------------------------------- # geno <- MatrixGenotypeReader(genotype = genotype, snpID = snpID, # chromosome = chromosome, position = position, # scanID = scanID) # genoData <- GenotypeData(geno) ## ---- eval=FALSE-------------------------------------------------------------- # geno <- GdsGenotypeReader(filename = "genotype.gds") # genoData <- GenotypeData(geno) ## ---- eval=FALSE-------------------------------------------------------------- # snpgdsBED2GDS(bed.fn = "genotype.bed", # bim.fn = "genotype.bim", # fam.fn = "genotype.fam", # out.gdsfn = "genotype.gds") ## ---- eval=FALSE-------------------------------------------------------------- # # read in GDS data # gdsfile <- system.file("extdata", "HapMap_ASW_MXL_geno.gds", package="GENESIS") # HapMap_geno <- GdsGenotypeReader(filename = gdsfile) ## ----------------------------------------------------------------------------- # create a GenotypeData class object with paired ScanAnnotationDataFrame HapMap_genoData <- GenotypeData(HapMap_geno, scanAnnot = scanAnnot) HapMap_genoData ## ----------------------------------------------------------------------------- # mypcrel contains Kinship Estimates from a previous PC-Relate analysis myGRM <- pcrelateToMatrix(mypcrel) myGRM[1:5,1:5] ## ----------------------------------------------------------------------------- # fit the null mixed model nullmod <- fitNullModel(scanAnnot, outcome = "pheno", covars = "pc1", cov.mat = myGRM, family = gaussian) ## ---- eval=FALSE-------------------------------------------------------------- # nullmod <- fitNullModel(scanAnnot, outcome = "pheno", # covars = c("pc1","pc2","sex","age"), # cov.mat = myGRM, family = gaussian) ## ---- eval=FALSE-------------------------------------------------------------- # nullmod <- fitNullModel(scanAnnot, outcome = "pheno", covars = "pc1", # cov.mat = list("GRM" = myGRM, "House" = H), # family = gaussian) ## ---- eval=FALSE-------------------------------------------------------------- # nullmod <- fitNullModel(scanAnnot, outcome = "pheno", covars = "pc1", # cov.mat = myGRM, family = gaussian, # group.var = "study") ## ---- eval=FALSE-------------------------------------------------------------- # nullmod <- fitNullModel(scanAnnot, outcome = "pheno", covars = "pc1", # cov.mat = myGRM, family = binomial) ## ----------------------------------------------------------------------------- genoIterator <- GenotypeBlockIterator(HapMap_genoData, snpBlock=5000) ## ----------------------------------------------------------------------------- assoc <- assocTestSingle(genoIterator, null.model = nullmod) ## ---- eval = FALSE------------------------------------------------------------ # # mysnps is a vector of snpID values for the SNPs we want to test # genoIterator <- GenotypeBlockIterator(HapMap_genoData, snpInclude=mysnps) # assoc <- assocTestSingle(genoIterator, null.model = nullmod) ## ----------------------------------------------------------------------------- head(assoc) ## ----------------------------------------------------------------------------- varCompCI(nullmod, prop = TRUE) ## ---- echo=FALSE-------------------------------------------------------------- close(genoIterator)