# #——回声= FALSE,结果= "飞机 "-------------------------------------------------------------------------------------------- 选项(宽度= 130 ) ## ---- 回声= FALSE -------------------------------------------------------------------------------------------------------------- htmltools:: img src = knitr: image_uri(“functionRules.png”),风格= ' margin-left:汽车;margin-right:汽车 ') ## ---- eval = FALSE -------------------------------------------------------------------------------------------------------------- # setGeneric(“kNNinterface函数(measurementsTrain…)standardGeneric(“kNNinterface”))# # setMethod(“kNNinterface”、“DataFrame”,函数(measurementsTrain, classesTrain measurementsTest,…, verbose = 3) # {# splitDataset <- .splitDataAndOutcomes(measurementsTrain, classstrain) # trainingMatrix <- as.matrix(splitDataset[["measurements"]]) # test <- test[, isNumeric, drop = FALSE] # # if(!requireNamespace("class", quiet = TRUE)) # stop("包'class'找不到。"请安装它。”)#如果(verbose = = 3) #消息(“拟合k最近的邻居数据分类和预测类。”)# # class::资讯(as.matrix (measurementsTrain) as.matrix (measurementsTest) measurementsTest , ...) # }) ## ---- eval = FALSE -------------------------------------------------------------------------------------------------------------- # setMethod(“kNNinterface”、“矩阵”,#函数(measurementsTrain、classesTrain measurementsTest,) # {# kNNinterface(DataFrame(measurementsTrain, check.names = FALSE), # classesTrain, # DataFrame(measurementsTest, check.names = FALSE),…)#})# # setMethod("kNNinterface", "MultiAssayExperiment", # function(measurementsTrain, measurementsTest, targets = names(measurementsTrain), classesTrain,…)# {# tablesAndClasses <- .MAEtoWideTable(measurementsTrain, targets,classesTrain) # trainingTable < - tablesAndClasses[[“数据表”]]#类< - tablesAndClasses[["结果"]]# testingTable < - .MAEtoWideTable (measurementsTest,目标)# # .checkVariablesAndSame (trainingTable testingTable) # kNNinterface (trainingTable、类testingTable , ...) # }) ## ---- 消息= FALSE ----------------------------------------------------------------------------------------------------------- 类< -因子(代表(c(“健康”、“疾病”),每个= 5),水平= c(“健康”,"疾病"))测量值<-矩阵(c(rnorm(50,10), rnorm(50,5)), ncol = 10) colnames(测量值)<- paste("Sample", 1:10) rownames(测量值)<- paste("mRNA", 1:10) library(ClassifyR) knnParams <- ModellingParams(selectParams = NULL, trainParams = trainParams (kNNinterface), predictParams = NULL) CVparams <- CrossValParams(" leave -k- out ", leave = 1) classified <- runTests(测量值,类,CVparams, knnParams) classified cbind(预测(分类),已知=实际结果(分类)