NanoStringGeoMxSet继承自Biobase的ExpressionSet类。NanoStringGeoMxSet类被设计用来封装从nanostringgeomx数字空间分析(DSP)平台生成的NanoString DCC文件的数据和相应的方法。
NanoStringGeoMxSet从ExpressionSet类继承了许多函数。你可以在这个链接中找到这些://www.andersvercelli.com/packages/release/bioc/vignettes/Biobase/inst/doc/ExpressionSetIntroduction.pdf
加载NanoStringNCTools和GeoMxTools包允许用户访问NanoStringGeoMxSet类和相应的方法。
使用readNanoStringGeoMxSet函数读入DCC文件。
phenoDataFile变量接受注释文件,而phenoDataDccColName用于指定注释中的哪一列包含DCC文件名。protocolDataColNames是注释文件中希望放在协议数据槽中的列。
datadir < -执行(“extdata”,“DSP_NGS_Example_Data”,包=“GeomxTools”)DCCFiles < -dir(datadir模式=“美元.dcc”,full.names =真正的)PKCFiles < -解压缩(zipfile =file.path(datadir“/ pkcs.zip”))SampleAnnotationFile < -file.path(datadir“annotations.xlsx”)demoData < -suppressWarnings(readNanoStringGeoMxSet(dccFiles =DCCFiles,pkcFiles =PKCFiles,phenoDataFile =SampleAnnotationFile,phenoDataSheet =“CW005”,phenoDataDccColName =“Sample_ID”,protocolDataColNames =c(“苍老师”,“cell_line”,“roi_rep”,“pool_rep”,“slide_rep”)))类(demoData)#> [1] "NanoStringGeoMxSet"# > attr(“包”)#> [1] "GeomxTools"isS4(demoData)#>[1]是真的是(demoData“ExpressionSet”)#>[1]是真的demoData#> NanoStringGeoMxSet (storageMode: lockedEnvironment)#> assayData: 8707个特征,88个样本#>元素名称:exprs# > protocolData#> samplnames: DSP-1001250002642-A02。dcc dsp - 1001250002642 - a03.dcc...# > dsp - 1001250002642 - h05。DCC(共88个)#> varLabels: FileVersion SoftwareVersion…NTC(共21个)#> varMetadata: labelDescription# > phenoData#> samplnames: DSP-1001250002642-A02。dcc dsp - 1001250002642 - a03.dcc...# > dsp - 1001250002642 - h05。DCC(共88个)#> varLabels:幻灯片名称扫描名称…面积(共6个)#> varMetadata: labelDescription# > featureData#> featurename: RTS0039454 RTS0039455…RTS0995671(共8707个)#> fvarLabels: RTS_ID TargetName…负(共8个)#> fvarMetadata: labelDescription#>实验数据:使用'实验数据(对象)'注释:Six-gene_test_v1_v1.1。pkc VnV_GeoMx_Hs_CTA_v1.2.pkc#>签名:无#>特性:探测#>分析物:RNA
#访问计数矩阵assayData(demoData) [[“exprs”]] [1:3.,1:3.]# > dsp - 1001250002642 - a02。dcc dsp - 1001250002642 - a03.dcc#> rts0039454 294 239#> rts0039455 270 281#> rts0039456 255 238# > dsp - 1001250002642 - a04.dcc6 . #> rts00394546 . #> rts0039455#> rts0039456#访问pheno数据pData(demoData) [1:3.,)#>幻灯片名称# > dsp - 1001250002642 - a02。dcc 6panel-old-slide1 (PTL-10891)# > dsp - 1001250002642 - a03。dcc 6panel-old-slide1 (PTL-10891)# > dsp - 1001250002642 - a04.dcc6panel-old-slide1 (PTL-10891)#>扫描名称# > dsp - 1001250002642 - a02。dcc cw005 (PTL-10891) Slide1# > dsp - 1001250002642 - a03。dcc cw005 (PTL-10891) Slide1# > dsp - 1001250002642 - a04.dcccw005 (PTL-10891) Slide1# >面板# > dsp - 1001250002642 - a02。dcc (v1.2) VnV癌症转录组图谱,(v1.0)六个基因检测定制# > dsp - 1001250002642 - a03。dcc (v1.2) VnV癌症转录组图谱,(v1.0)六个基因检测定制# > dsp - 1001250002642 - a04.dcc(v1.2) VnV Cancer Transcriptome Atlas, (v1.0) Six gene test custom#> ROI段区域# > dsp - 1001250002642 - a02。dcc 1几何段31318.73# > dsp - 1001250002642 - a03。dcc 2几何段31318.73# > dsp - 1001250002642 - a04.dcc3.Geometric Segment 31318.73#访问协议数据pData(protocolData(demoData)) (1:3.,)#> FileVersion软件版本日期# > dsp - 1001250002642 - a02。DCC 0.1 1.0.0 2020-07-14# > dsp - 1001250002642 - a03。DCC 0.1 1.0.0 2020-07-14# > dsp - 1001250002642 - a04.dcc0.1 1.0.0 2020-07-14好吧# > dsp - 1001250002642 - a02。dcc DSP-1001250002642-A02# > dsp - 1001250002642 - a03。dcc DSP-1001250002642-A03# > dsp - 1001250002642 - a04.dccDSP-1001250002642-A04 1001250002642 A04#> SeqSetId原始修剪缝合对齐# > dsp - 1001250002642 - a02。dcc VH00121:3:AAAG2YWM5 646250 646250 616150 610390# > dsp - 1001250002642 - a03。dcc VH00121:3:AAAG2YWM5 629241 629241 603243 597280# > dsp - 1001250002642 - a04.dccVH00121:3:AAAG2YWM5 831083 831083 798188 791804#> umiQ30 rtsQ30 DeduplicatedReads# > dsp - 1001250002642 - a02。DCC 0.9785 0.9804 312060# > dsp - 1001250002642 - a03。DCC 0.9784 0.9811 305528# > dsp - 1001250002642 - a04.dcc0。9785 0.9801 394981#> aoi cell_line roi_rep pool_rep# > dsp - 1001250002642 - a02。dcc几何分段-aoi-001 HS578T 1# > dsp - 1001250002642 - a03。dcc几何分段-aoi-001 HS578T 2# > dsp - 1001250002642 - a04.dccGeometric Segment-aoi-001 HEL 1 1#> slide_rep NTC_ID NTC# > dsp - 1001250002642 - a02。dcc 1 DSP-1001250002642-A01。dcc 7# > dsp - 1001250002642 - a03。dcc 1 DSP-1001250002642-A01。dcc 7# > dsp - 1001250002642 - a04.dcc1DSP-1001250002642-A01.dcc 7#访问探测信息fData(demoData) [1:3.,)RTS_ID TargetName模块CodeClassRTS0039454 ACTA2 VnV_GeoMx_Hs_CTA_v1.2内生#> RTS0039455 RTS0039455 ACTA2 VnV_GeoMx_Hs_CTA_v1.2内生#> RTS0039456 RTS0039456 ACTA2 VnV_GeoMx_Hs_CTA_v1.2内生#> ProbeID GeneID SystematicName否定#> RTS0039454 NM_001141945.1:460_5p 59 ACTA2错误#> RTS0039455 nm_0011419445:460_3p 59 ACTA2错误#> RTS0039456 NM_001613.2:154_3p 59 ACTA2 FALSE#检查功能类型featureType(demoData)#>[1]“探针”#访问PKC信息注释(demoData)#> [1] " 6 -gene_test_v1_v1.1。pkc VnV_GeoMx_Hs_CTA_v1.2.pkc”
除了与ExpressionSet类相关的访问器外,NanoStringGeoMxSet对象还具有独特的附加赋值和访问器方法,以方便查看DSP数据和相关标签的通用方法。
这个包提供了获取数据注释的函数
访问可用的pheno和协议数据变量
svarLabels(demoData)#>[1] "幻灯片名称" "扫描名称" "面板"#>[4]“roi”“segment”“area”#> [7] "FileVersion" "SoftwareVersion" "Date"#> [10] "SampleID" "Plate_ID" "Well"#>[13]“SeqSetId”“Raw”“trim”#>[16]“缝合”“对齐”“umiQ30”#> [19] "rtsQ30" "DeduplicatedReads" "aoi"#> [22] "cell_line" "roi_rep" "pool_rep"#> [25] "slide_rep" "NTC_ID" "NTC"头(sData(demoData),2)#>幻灯片名称# > dsp - 1001250002642 - a02。dcc 6panel-old-slide1 (PTL-10891)# > dsp - 1001250002642 - a03。dcc 6panel-old-slide1 (PTL-10891)#>扫描名称# > dsp - 1001250002642 - a02。dcc cw005 (PTL-10891) Slide1# > dsp - 1001250002642 - a03。dcc cw005 (PTL-10891) Slide1# >面板# > dsp - 1001250002642 - a02。dcc (v1.2) VnV癌症转录组图谱,(v1.0)六个基因检测定制# > dsp - 1001250002642 - a03。dcc (v1.2) VnV癌症转录组图谱,(v1.0)六个基因检测定制#> roi段区域FileVersion# > dsp - 1001250002642 - a02。dcc 1几何段31318.73 0.1# > dsp - 1001250002642 - a03。dcc 2几何段31318.73 0.1#>软件版本日期# > dsp - 1001250002642 - a02。dcc 1.0.0 2020-07-14 DSP-1001250002642-A02# > dsp - 1001250002642 - a03。dcc 1.0.0 2020-07-14 DSP-1001250002642-A03#> Plate_ID SeqSetId Raw trim# > dsp - 1001250002642 - a02。dcc 1001250002642 A02 VH00121:3:AAAG2YWM5 646250 646250# > dsp - 1001250002642 - a03。dcc 1001250002642 A03 VH00121:3:AAAG2YWM5 629241 629241#> Stitched Aligned umiQ30 rtsQ30 DeduplicatedReads# > dsp - 1001250002642 - a02。dcc 616150 610390 0.9785 0.9804 312060# > dsp - 1001250002642 - a03。dcc 603.243.597280 0.9784 0.9811 305528#> aoi cell_line roi_rep pool_rep# > dsp - 1001250002642 - a02。dcc几何分段-aoi-001 HS578T 1# > dsp - 1001250002642 - a03。dcc几何分段-aoi-001 HS578T 2#> slide_rep NTC_ID NTC# > dsp - 1001250002642 - a02。dcc 1 DSP-1001250002642-A01。dcc 7# > dsp - 1001250002642 - a03。dcc 1 DSP-1001250002642-A01。dcc 7
可以将设计信息分配给NanoStringGeoMxSet对象,以及用于NanoStringGeoMxSet绘图方法的特性和示例标签。
使用汇总方法轻松汇总计数结果。数据摘要可以跨特征或样本生成。标签可用于生成基于特征或样本分组的摘要。
头(总结(demoData利润=1),2)#> GeomMean SizeFactor MeanLog2 SDLog2 Min Q1中位数Q3最大#> rts0039454 11.41376 1.196060 3.512703 2.287478 1 4 9 16.75 344#> rts0039455 10.35145 1.084739 3.371761 2.228309 0 47 21.00 315头(总结(demoData利润=2),2)#> GeomMean SizeFactor MeanLog2 SDLog2 Min Q1中位数Q3# > dsp - 1001250002642 - a02。DCC 9.929751 1.0405489 3.311758 1.94747 04 7 23# > dsp - 1001250002642 - a03。DCC 9.280617 0.9725255 3.214221 1.98530 0 4 7 22# >马克斯# > dsp - 1001250002642 - a02。dcc 8137# > dsp - 1001250002642 - a03。dcc 9147独特的(sData(demoData)$“cell_line”)# >[1]“HS578T”“冥界”“U118MG”“HDLM2”“THP1”“H596”“OPM2”#>[8]“daudi”“malme3m”“col201”“hut78”头(总结(demoData利润=2,组=“cell_line”)$“HS578T”,2)#> GeomMean SizeFactor MeanLog2 SDLog2 Min Q1中位数Q3# > dsp - 1001250002642 - a02。DCC 9.929751 1.507066 3.311758 1.94747 0 47 23# > dsp - 1001250002642 - a03。DCC 9.280617 1.408545 3.214221 1.98530 0 4 7 22# >马克斯# > dsp - 1001250002642 - a02。dcc 8137# > dsp - 1001250002642 - a03。dcc 9147头(总结(demoData利润=2,组=“cell_line”)$“COLO201”,2)#> GeomMean SizeFactor MeanLog2 SDLog2 Min Q1中位数# > dsp - 1001250002642 - b08。DCC 3.683270 0.5817191 1.880987 1.815589 0 2 3# > dsp - 1001250002642 - b09。dcc 4.385107 0.6925640 2.132612 1.879853 0 2 4#> Q3 Max# > dsp - 1001250002642 - b08。DCC 8 1146# > dsp - 1001250002642 - b09。DCC 101372头(总结(demoData利润=2,组=“cell_line”,log2 =假)$“COLO201”,2)#>平均SD偏度峰度最小Q1中位数Q3# > dsp - 1001250002642 - b08。DCC 9.859538 31.49779 14.13199 312.7038 0 2 38# > dsp - 1001250002642 - b09。DCC 12.517400 40.84549 13.33816 264.5914 0 2 4 10# >马克斯# > dsp - 1001250002642 - b08。dcc 1146# > dsp - 1001250002642 - b09。dcc 1372
NanoStringGeoMxSet提供了包括括号子集和子集函数在内的子集方法。用户可以使用子集或选择参数分别按特征或样本进一步进行子集。
使用括号符号
或者使用子集方法通过只选择特定的幻灯片来对demoData对象进行子集化
昏暗的(子集(demoData选择=phenoData(demoData) [[“幻灯片名称”]]= =“6 panel-old-slide1 (ptl - 10891)”))#>特征样本#> 8707 22
子集通过选择特定的目标和幻灯片名称
昏暗的(子集(demoData TargetName= =“ACTA2”,`幻灯片的名字`= =“6 panel-old-slide1 (ptl - 10891)”))#>特征样本#> 5 22昏暗的(子集(demoData CodeClass= =“控制”,`幻灯片的名字`= =“6 panel-old-slide1 (ptl - 10891)”))#>特征样本#> 154 22
使用endogenous子集和negativecontrol子集函数对demodata进行子集化,只包含属于内生代码类或负代码类的特征。
endogenous子集函数也接受选择参数以进一步根据表型数据进行子集
昏暗的(endogenousSubset(demoData选择=phenoData(demoData) [[“幻灯片名称”]]= =“6 panel-old-slide1 (ptl - 10891)”))#>特征样本#> 8470#根据他们的协议或表型数据分组统计样本的数量与(endogenousSubset(demoData),表格(`幻灯片的名字`))#>幻灯片名称#> 6panel-new-slide3 (PTL-10891)#> 22 22#> 6panel-old-slide1 (PTL-10891)#> 22 22与(demoData [1:10,1:10],表格(cell_line))# > cell_line@ # @ @ @ @ @ @ @ @ @ @ @ @ @ @#> 2 2 2 2 2 2与(negativeControlSubset(demoData),表格(CodeClass))# > CodeClass# >负# > 83
类似于ExpressionSet的esApply函数,NanoStringGeoMxSet对象也有一个等效的方法。函数可以应用于分析数据特征或样本。
使用assayDataApply函数将作为计数矩阵的对数计算的demoElem数据添加到demoData中。来自eSet的访问函数assayDataElement返回对象的assayData槽中的矩阵元素。Elt指向assayData中的元素。
assayDataElement(demoData“demoElem”) < -assayDataApply(demoData利润=2,有趣的=日志,基础=10,英语教学=“exprs”)assayDataElement(demoData“demoElem”) [1:3.,1:2]# > dsp - 1001250002642 - a02。dcc dsp - 1001250002642 - a03.dcc#> rts0039454 2.468347 2.378398#> rts0039455 2.431364 2.448706#> rts0039456 2.406540 2.376577#循环遍历assayData元素的特征(1)或样本(2)并获得平均值assayDataApply(demoData利润=1,有趣的=的意思是,英语教学=“demoElem”) [1:5]#> rts0039454 rts0039455 rts0039456 rts0039457 rts0039458#> 1.0574289 -Inf 0.9943958 1.4974429 -Inf#用特征,pheno或协议数据按组列分割数据,然后得到平均值头(里(demoData组=“cell_line”,有趣的=函数(x) {assayDataApply(x,利润=1,有趣的=的意思是,英语教学=“demoElem”)}))#> col201 daudi h596 hdlm2 hel hs578t hut78#> rts0039454 0.3910499 0.7918610 0.7070841 1.235112 0.7436161 2.335504 2.3005684#> rts0039455 0.4139162 0.6934411 0.7044355 1.121399 0.7169818 2.250828 2.2031171#> rts0039456 0.3571666 0.5259476 0.7796930 1.153415 0.7048680 2.196286 2.1858906#> rts0039457 1.1237902 1.2848894 1.2285543 1.416938 1.2153038 2.611181 2.4856476#> rts003942803 0.8141501 0.7048680 1.216667 0.8127214 2.394991 2.3079279#> RTS0039459 1.1052012 0.6291780 0.5407100 -Inf 0.5160499 -Inf 0.4350727# b7, # b7#> rts0039454 1.1950246 0.5140756 0.3692803 1.0485415#> RTS0039455 1.1766227 0.4643331 -Inf 1.0308625#> rts0039456 1.1870660 0.4885606 0.3910499 0.9684105#> rts0039457 1.5631204 1.1072751 1.0942654 1.3409072#> RTS0039458 1.2459613 0.7235564 -Inf 1.0365510#> RTS0039459 0.4984583 0.5684411 0.5019619 -Inf
用户可以根据表达式标记未达到QC阈值的样本或具有边界结果。setQC标志将在protocolData中为低计数和低饱和水平的样本和探针设置QC标志。它还将为探测本地异常值(低值和高值)和全局异常值设置标志
demoData < -shiftCountsOne(demoDatauseDALogic =真正的)demoData < -setSegmentQCFlags(demoData)头(protocolData(demoData) [[“QCFlags”]])#> LowReads lowtrim LowStitched LowAligned# > dsp - 1001250002642 - a02。dcc FALSE FALSE FALSE FALSE FALSE# > dsp - 1001250002642 - a03。dcc FALSE FALSE FALSE FALSE FALSE# > dsp - 1001250002642 - a04.dcc假假假假# > dsp - 1001250002642 - a05。dcc FALSE FALSE FALSE FALSE FALSE# > dsp - 1001250002642 - a06.dcc假假假假# > dsp - 1001250002642 - a07。dcc FALSE FALSE FALSE FALSE FALSE#>低饱和度低底片高ntc低面积# > dsp - 1001250002642 - a02。dcc TRUE TRUE FALSE FALSE# > dsp - 1001250002642 - a03。dcc TRUE TRUE FALSE FALSE# > dsp - 1001250002642 - a04.dcc假真正的假假# > dsp - 1001250002642 - a05。dcc TRUE TRUE FALSE FALSE# > dsp - 1001250002642 - a06.dcc假真正的假假# > dsp - 1001250002642 - a07。dcc TRUE TRUE FALSE FALSEdemoData < -setBioProbeQCFlags(demoData)featureData(demoData) [[“QCFlags”]] [1:5,1:4]#> LowProbeRatio GlobalGrubbsOutlier#> rts0039454 false false#> rts0039455 false false#> rts0039456 false false#> rts0039457 false false#> rts0039458 false false# > localgrubbsoutlier.dsp a02.dcc——1001250002642#> rts0039454错误#> rts0039455错误#> rts0039456错误#> rts0039457错误#> rts0039458错误# > localgrubbsoutlier.dsp a03.dcc——1001250002642#> rts0039454错误#> rts0039455错误#> rts0039456错误#> rts0039457错误#> rts0039458错误
被标记的探针和样品可以通过子集从分析中移除。
子集对象以排除所有未通过测序和后台QC的数据。
QCResultsIndex < -哪一个(应用(protocolData(demoData) [[“QCFlags”]],1 l,函数(x)总和(x)= =0 l))QCPassed < -demoData [, QCResultsIndex]昏暗的(QCPassed)#>特征样本#> 8707 0
从低计数中清除对象后,可以使用aggregateCounts函数将计数折叠到目标。
在调用aggregateCounts函数时,将新对象保存为target_demoData。这将改变特征的维度。在聚合计数之后,特征数据将包含目标计数而不是探测计数。要检查特征类型,可以使用featureType访问器函数。
注意,特征数据更改为目标。
featureType(target_demoData)#>[1]目标exprs(target_demoData) [1:5,1:5]# > dsp - 1001250002642 - a02。dcc dsp - 1001250002642 - a03.dcc#> acta2 328.286182 323.490808foxa2 4.919019 4.919019#> nanog 2.954177 4.128918#> trac 2.992556 4.617893#> trbc1/2 2.825235 1.933182# > dsp - 1001250002642 - a04.dccDSP-1001250002642-A05.dcc#> acta2 6.081111 5.304566#> foxa2 6.942503 4.208378#>纳米8.359554 7.785262#> trac 4.514402 4.192963#> trbc1/2 3.519482 3.807308# > dsp - 1001250002642 - a06.dcc#> acta2 15.927470#> foxa2 6.470273#> nanog 3.981072#> trac 4.643984#> trbc1/2 4.535866
在NanoStringGeoMxSet类中有一个预加载的GeoMx DSP-DA规范化。这包括在分位数上规范化、内务化或负规范化的选项。
target_demoData < -正常化(target_demoDatanorm_method =“量化”,desiredQuantile =。9,toElt =“q_norm”)target_demoData < -正常化(target_demoDatanorm_method =“否定”,fromElt =“exprs”,toElt =“neg_norm”)target_demoData < -正常化(target_demoDatanorm_method =“香港”,fromElt =“exprs”,toElt =“hk_norm”)assayDataElement(target_demoData,英语教学=“q_norm”) [1:3.,1:2]# > dsp - 1001250002642 - a02。dcc dsp - 1001250002642 - a03.dcc#> acta2 326.118346 324.968900#> foxa2 4.886536 4.941495#> nanog 2.934669 4.147784assayDataElement(target_demoData,英语教学=“hk_norm”) [1:3.,1:2]# > dsp - 1001250002642 - a02。dcc dsp - 1001250002642 - a03.dcc#> acta2 265.002676 273.615381#> foxa2 3.970783 4.160610#> nanog 2.384702 3.492326assayDataElement(target_demoData,英语教学=“neg_norm”) [1:3.,1:2]# > dsp - 1001250002642 - a02。dcc dsp - 1001250002642 - a03.dcc#> acta2 288.519851 344.955505#> foxa2 4.323163 5.245412#> nanog 2.596328 4.402885
NanoStringGeoMxSet munge函数为下游建模和可视化生成一个数据帧对象。这将可用的特性和示例组合成一个长格式。
neg_set < -negativeControlSubset(demoData)类(neg_set)#> [1] "NanoStringGeoMxSet"# > attr(“包”)#> [1] "GeomxTools"neg_ctrls < -munge(neg_set~exprs)头(neg_ctrls2)#> FeatureName SampleName exprs#> 1 rts0047618 dsp-1001250002642-a02。dcc 6#> 2 rts0047619 dsp-1001250002642-a02。dcc 4类(neg_ctrls)#> [1] "data.frame"头(munge(demoData~exprs),2)#> FeatureName SampleName exprs#> 1 rts0039454 dsp-1001250002642-a02。dcc 294#> 2 rts0039455 dsp-1001250002642-a02。dcc 270munge(demoData映射=~`cell_line`+GeneMatrix)#>数据帧88行2列#> cell_line GeneMatrix#> <字符> <矩阵># > dsp - 1001250002642 - a02。dcc HS578T 294:270:255:…# > dsp - 1001250002642 - a03。dcc HS578T 239: 288:238:…# > dsp - 1001250002642 - a04.dccHEL 6: 6: 3:...# > dsp - 1001250002642 - a05。dcc HEL 7:5:2:…# > dsp - 1001250002642 - a06.dccU118MG 13: 11: 16:...#> ... ... ...# > dsp - 1001250002642 - h01。dcc MALME3M 15:21: 20:…# > dsp - 1001250002642 - h02。dcc col201 4:8:5:…# > dsp - 1001250002642 - h03。dcc col201 1:4:6:…# > dsp - 1001250002642 - h04。dcc HUT78 243:218:250:…# > dsp - 1001250002642 - h05。dcc HUT78 230:215:222:…
从每个样本中减去最大计数创建调整计数的log1p转换
打< -assayDataApply(negativeControlSubset(demoData),2马克斯)demoData < -变换(demoDatanegCtrlZeroed =扫描(exprs2,打),log1p_negCtrlZeroed =log1p(pmax(negCtrlZeroed0)))assayDataElementNames(demoData)#> [1] "demoElem" "exprs" "log1p_negCtrlZeroed"#> [4] "negCtrlZeroed" "preLocalRemoval" "rawZero"
sessionInfo()#> R版本4.2.0 RC (2022-04-21 r82226)#>平台:x86_64-pc-linux-gnu(64位)运行在Ubuntu 20.04.4 LTS下# >矩阵产品:默认值#> BLAS: /home/biocbuild/bbs-3.16-bioc/R/lib/libRblas.so#> LAPACK: /home/biocbuild/bbs-3.16-bioc/R/lib/libRlapack.so# ># >语言环境:#> [1] LC_CTYPE=en_US。utf - 8 LC_NUMERIC = C#> [3] LC_TIME=en_GB LC_COLLATE=C#> [5] LC_MONETARY=en_US。utf - 8 LC_MESSAGES = en_US。utf - 8#> [7] LC_PAPER=en_US。utf - 8 LC_NAME = C#> [9] lc_address = c lc_phone = c#> [11] LC_MEASUREMENT=en_US。utf - 8 LC_IDENTIFICATION = C# >#>附加基础包:#> [1] stats4 stats graphics grDevices utils数据集方法#>[8]基地# >#>其他附加包:#> [1] ggiraph_0.8.2 EnvStats_2.7.0 GeomxTools_3.1.1#> [4] NanoStringNCTools_1.5.0 ggplot2_3.3.5 S4Vectors_0.35.0#> [7] Biobase_2.57.0 BiocGenerics_0.43.0# >#>通过命名空间加载(并且没有附加):#> [1] sass_0.4.1 jsonlite_1.8.0 splines_4.2.0#> [4] bslib_0.3.1 assertthat_0.2.1 GenomeInfoDbData_1.2.8#> [7] vipor_0.4.5 cellranger_1.1.0 yaml_2.3.5#> [10] numderivatives _2016.8-1.1 pillar_1.7.0 lattice_0.20-45#> [13] glue_1.6.2 uuid_1.1-0 digest_0.6.29 . ##> [16] RColorBrewer_1.1-3 XVector_0.37.0 minqa_1.2.4htmltools_0.5.2 Matrix_1.4-1#> [22] plyr_1.8.7 pkgconfig_2.0.3 pheatmap_1.0.12#> [25] zlibbioc_1.43.0 purrr_0.3.4 scales_1.2.0#> [28] lme4_1.1-29 tibble_1 .1.6 generics_0.1.2 . ##> [31] IRanges_2.31.0 ellipsis_0.3.2 with thr_2.5.0#> [34] SeuratObject_4.0.4 cli_3.3.0 magrittr_2.0.3#> [37] crayon_1.5.1 readxl_1.4.0 evaluate_0.15#> [40] GGally_2.1.2 fansi_1.0.3 nlme_1 .1-157#> [43] MASS_7.3-57 beeswarm_0.4.0 ggthemes_4.2.4#> [46] tools_4.2.0 data.table_1.14.2 lifecycle_1.0.1 . ##> [49] Biostrings_2.65.0#> [52] compiler_4.2.0 jquerylib_0.1.4 GenomeInfoDb_1.33.1 . ##> [55] systemfonts_1.0.4 rlang_1.0.2 nloptr_2.0.0#> [58] grid_4.2.0 RCurl_1.98-1.6 rjson_0.2.21#> [61] htmlwidgets_1.5.4 bitops_1.0-7 rmarkdown_2.14#> [64] boot_1.3-28 gtable_0.3.0 lmertest_1 .3- 3. ##> [67] reshape_0.8.9 DBI_1.1.2 reshape2_1.4.4#> [70] R6_2.5.1 knitr_1.39 dplyr_1.0.9#> [73] fastmap_1.1.0 utf8_1.2.2 stringi_1.7.6#> [76] ggbeeswarm_0.6.0 parallel_4.2.0 Rcpp_1.0.8.3#> [79] vctrs_0.4.1 tidyselect_1.1.2 xfun_0.30