## ----import_libraries, message=FALSE, warning=FALSE--------------------------- library("Nebulosa") library(“ scater”)库(“ scran”)库(“ dropletutils”)库(“ biocfilecache”)## --------------------------------------------------------------------------------------------------------------------------------------------------------------------- bfc <- BiocFileCache(ask = FALSE) data_file <- bfcrpath(bfc, file.path( "https://s3-us-west-2.amazonaws.com/10x.files/samples/cell“,” pbmc3k“,” pbmc3k_filtered_gene_gene_bc_matrices.tar.tar.tar.gz'- read10xcounts(file.path(tempdir(),“ filtered_gene_bc_matrices”,“ hg19”))## ---------------------------------------------------------------------------------------------------------------------------------------------------------- rownames(pbmc) <- uniquifyFeatureNames(rowData(pbmc)[[“ id”],Rowdata(PBMC)[[“符号”])## --------------------------------------------------------------------------------------------------------------------------------------------------- i <-Rowsums(counts(pbmc)> 0)is_expressed <- i> 3 pbmc <-pbmc [is_expressed,] ## ----滤波器---------------------------------------------------------------------------------------------------------------------------------------------------------- i <-Colsums(couts(pbmc)> 0)is_expressed <-i> 200 pbmc <-pbmc [,is_expressed] ## -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------,----------------------------------------------------------- iS_MITO <-grepl(“^mt-”,ROWNAMES(PBMC))QCSTATS <-percellqcmetrics(pbmc,subsets = list(mito = is_mito))qcfilter <-quickpercellqc(qcstats,percen_subsets = c(“ subsets_mito_percent”)------------------------------------------------------------------------------------------------- logcounts(pbmc)<-log1p(counts(pbmc) / colsums(counts(pbmc)) * 1E4)## ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ dec <-Modelgenevar(pbmc)top_hvgs <-getTophvgs(dec,n = 3000)## ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- set.seed(66)pBMC <-runpca(pbmc,scale = true,subset_row = top_hvgs)## ---------------------------------------------------------------------------------------------------------------------------------------- pbmc <- runUMAP(pbmc, dimred =“ PCA”)## ----聚类--------------------------------------------------------------------------------------------------------------------------------------------------------------- g <-buldsnngraph(pbmc, k = 10, use.dimred = "PCA") clust <- igraph::cluster_louvain(g)$membership colLabels(pbmc) <- factor(clust) ## ----plot_cd4----------------------------------------------------------------- plot_density(pbmc, "CD4") ## ----cd4_comparison----------------------------------------------------------- plotUMAP(pbmc, colour_by = "CD4") ## ----fig.height=10------------------------------------------------------------ p3 <- plot_density(pbmc, c("CD8A", "CCR7")) p3 + plot_layout(ncol = 1) ## ----fig.height=14------------------------------------------------------------ p4 <- plot_density(pbmc, c("CD8A", "CCR7"), joint = TRUE) p4 + plot_layout(ncol = 1) ## ----clusters----------------------------------------------------------------- plotUMAP(pbmc, colour_by = "label", text_by = "label") ## ----combine_param------------------------------------------------------------ p_list <- plot_density(pbmc, c("CD8A", "CCR7"), joint = TRUE, combine = FALSE) p_list[[length(p_list)]] ## ----joint, fig.height=14----------------------------------------------------- p4 <- plot_density(pbmc, c("CD4", "CCR7"), joint = TRUE) p4 + plot_layout(ncol = 1)