## ---- echo = TRUE, results = 'hide', message = FALSE, warning = FALSE--------- library(SBGNview) library(SummarizedExperiment) data("IFNg", "pathways.info”)count.data < - assays(ifng)$ counts head(count.data)wt.cols < - who(ifng $ group ==“ wt”))## ---- echo = true,结果='hide',messages = false,parning = false ------- eNSEMBL.Pathway <-sbgn.gsets(id.type =“ eNsembl”,temp =“mmu", mol.type = "gene", output.pathway.name = TRUE ) head(ensembl.pathway[[2]]) ## ---- echo = TRUE, results = 'hide', message = FALSE,警告= false -------- if(!sireseenamespace(“ gage”,emile = true)){biocmanager :: install(“ gage”,update = false)} library(gage)degs degs <-gage(exprs = count.data,gsets = ensembl.pathway,ref = wt.cols,samp = ko.cols,compare =“配对”#“ as.group”)head(degs $ greem)[,3:5]deg $ siss)[,3:5] down.Pathways <-Row.names(DEGS $ LISE)[1:10] head(down.pathways)## ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------消息= false,警告= false------------------ emembl.kovswt <-count.data [,ko.cols] -count.data [,wt.cols] head(ensembl.kovswt)#alternesty,我们也可以计算平均折叠更改Gene,对应于上面的GAGE分析,并具有compare =“ as.group”平均值。应用(count.data [,ko.cols],1,“均值”)头(均值。因此,折叠是它们的差异。Ensembl.kovswt.m < - sean.ko -ko-nee.wt ## ---- echo = true,结果='hide',message = false,pardning = false = false-----------------------------------------------------------------------------途径收集,这可能需要几秒钟。 data(sbgn.xmls) down.pathways <- sapply(strsplit(down.pathways,"::"), "[", 1) head(down.pathways) sbgnview.obj <- SBGNview( gene.data = ensembl.koVsWt, gene.id.type = "ENSEMBL", input.sbgn = down.pathways[1:2],#can be more than 2 pathways output.file = "ifn.sbgnview.less", show.pathway.name = TRUE, max.gene.value = 2, min.gene.value = -2, mid.gene.value = 0, node.sum = "mean", output.format = c("png"), font.size = 2.3, org = "mmu", text.length.factor.complex = 3, if.scale.compartment.font.size = TRUE, node.width.adjust.factor.compartment = 0.04 ) sbgnview.obj ## ----ifng, echo = FALSE,fig.cap="\\label{fig:ifng}SBGNview graph of the most down-regulated pathways in IFNg KO experiment"---- library(knitr) include_graphics("ifn.sbgnview.less_R-HSA-877300_Interferon gamma signaling.svg") ## ----ifna, echo = FALSE,fig.cap="\\label{fig:ifna}SBGNview graph of the second most down-regulated pathways in IFNg KO experiment"---- library(knitr) include_graphics("ifn.sbgnview.less_R-HSA-909733_Interferon alpha_beta signaling.svg") ## ---- echo = TRUE, results = 'hide', message = FALSE, warning = FALSE--------- data("cancer.ds") sbgnview.obj <- SBGNview( gene.data = cancer.ds, gene.id.type = "ENTREZID", input.sbgn = "R-HSA-877300", output.file = "demo.SummarizedExperiment", show.pathway.name = TRUE, max.gene.value = 1, min.gene.value = -1, mid.gene.value = 0, node.sum = "mean", output.format = c("png"), font.size = 2.3, org = "hsa", text.length.factor.complex = 3, if.scale.compartment.font.size = TRUE, node.width.adjust.factor.compartment = 0.04 ) sbgnview.obj ## ----cancerds, echo = FALSE,fig.cap="\\label{fig:cancerds}SBGNview of a cancer dataset gse16873"---- include_graphics("demo.SummarizedExperiment_R-HSA-877300_Interferon gamma signaling.svg") ## ----------------------------------------------------------------------------- sessionInfo()