## ----设置,包括=假--------------------------------------------- knitr :: opts_chunk $ set(dpi = 300)knitr :: opts_chunk $ set(cache = false)## ---- echo = false,隐藏= true,消息= false,警告= false -------------------- devtools :: load_all(“。)## ---- eval = false --------------------------------------------------------------------------#if(!qualocmamespace(“biocmanager”,静静= true))#sipling.packages(“biocmanager”)#biocmanager ::安装(“starbiotrek”)## ---- eval = true ---------------------------------------------------------------------------图书馆(石墨)sel <-papitydatabases()## ---- eval = true,回声= false -------------------------------------------- knitr :: Kable(Sel,Digits = 2,Caption =“List的Patwhay数据库和物种“,row.names = false)## ---- eval = true ----------------------------------------------------------------- incees =“hsapiens”pathwaydb =“kegg”路径<-getdata(物种,pathwaydb)## ----评估=假-------------------------------------------------------------------#帕特hway_allgene <-getpatpdata(path_all = path [1:3])## ---- eval = false ------------------------------------------------------#pathway_net <-getpathnet(path_all = path [1:3])##---- eval = true -------------------------------------------------------衔接<-convertedidgenes(path_all = path [1:10])## ---- eval = true --------------------------------------------------------------------------- organismID="Saccharomyces_cerevisiae" netw<-getNETdata(network="SHpd",organismID) ## ---- eval = TRUE------------------------------------------------------------- lista_net<-pathnet(genes.by.pathway=pathway[1:5],data=netw) ## ---- eval = TRUE------------------------------------------------------------- list_path<-listpathnet(lista_net=lista_net,pathway=pathway[1:5]) ## ---- eval = TRUE------------------------------------------------------------- list_path_gene<-GE_matrix(DataMatrix=tumo[,1:2],genes.by.pathway=pathway[1:10]) ## ---- eval = TRUE------------------------------------------------------------- list_path_plot<-GE_matrix_mean(DataMatrix=tumo[,1:2],genes.by.pathway=pathway[1:10]) ## ---- eval = FALSE------------------------------------------------------------ # score_mean<-average(pathwayexpsubset=list_path_gene) ## ---- eval = TRUE------------------------------------------------------------- score_st_dev<-stdv(gslist=list_path_gene) ## ---- eval = FALSE------------------------------------------------------------ # score_euc_distance<-eucdistcrtlk(dataFilt=tumo[,1:2],pathway_exp=pathway[1:10]) ## ---- eval = FALSE------------------------------------------------------------ # cross_talk_st_dv<-dsscorecrtlk(dataFilt=tumo[,1:2],pathway_exp=pathway[1:10]) ## ---- eval = FALSE------------------------------------------------------------ # nf <- 60 # res_class<-svm_classification(TCGA_matrix=score_euc_dista[1:30,],nfs=nf, # normal=colnames(norm[,1:10]),tumour=colnames(tumo[,1:10])) ## ---- eval = FALSE------------------------------------------------------------ # DRIVER_SP<-IPPI(pathax=pathway_matrix[,1:3],netwa=netw_IPPI[1:50000,]) ## ---- eval = TRUE------------------------------------------------------------- formatplot<-plotcrosstalk(pathway_plot=pathway[1:6],gs_expre=tumo) library(qgraph) qgraph(formatplot[[1]], minimum = 0.25, cut = 0.6, vsize = 5, groups = formatplot[[2]], legend = TRUE, borders = FALSE,layoutScale=c(0.8,0.8)) ## ---- eval = TRUE------------------------------------------------------------- qgraph(formatplot[[1]],groups=formatplot[[2]], layout="spring", diag = FALSE, cut = 0.6,legend.cex = 0.5,vsize = 6,layoutScale=c(0.8,0.8)) ## ---- eval = FALSE------------------------------------------------------------ # formatplot<-plotcrosstalk(pathway_plot=pathway[1:6],gs_expre=tumo) # score<-runif(length(formatplot[[2]]), min=-10, max=+10) # circleplot(preplot=formatplot,scoregene=score) ## ---- fig.width=6, fig.height=4, echo=FALSE, fig.align="center"--------------- library(png) library(grid) img <- readPNG("circleplot.png") grid.raster(img) ## ----sessionInfo-------------------------------------------------------------- sessionInfo()