# #——global_options,包括= FALSE -------------------------------------------- knitr: opts_chunk美元(消息= FALSE。Width ="125%", fig.align="center", strip。白色=TRUE,警告=FALSE,整洁=TRUE, #out.extra='style="显示:块;保证金:汽车;"', fig.height = 4, fig.width = 8, error=FALSE) fig.cap0 <- "模拟测井概率热图。效果是蓝色的,没有效果是红色的。行表示观察到的e基因,列表示p基因。每个p基因在许多细胞中都被扰动过。e基因被注释为它们是如何附着在基本真相中的。例如E-genes命名为' 1 '连接到e基因在地上' 1 '的真理。“fig.cap1 < - probabilsitic摄动矩阵的“热图”。paltmp < -调色板()paltmp[3] < -“蓝色”paltmp[4] < -面板(paltmp“棕色” ) ## ---- eval = FALSE -------------------------------------------------------------- # 如果(!requireNamespace(“BiocManager”,悄悄地= TRUE)) # install.packages (BiocManager) # BiocManager::安装(“nempi ") ## ----------------------------------------------------------------------------- 库(nempi ) ## ---- fig.height = 6, fig.width = 10, fig.cap =无花果。cap0---------------------------- library(mnem) seed <- 8675309 Pgenes <- 10 Egenes <- 5 samples <- 100 edgeprob <- 0.5 uninform <- floor((Pgenes*Egenes)*0.1) Nems <- mw <- 1 noise <- 1 multi <- c(0.2, 0.1) set.seed(seed) simmini <- simData(Sgenes = Pgenes, Egenes = Egenes, Nems = Nems, mw = mw, nCells = samples, uninform = uninform, multi = multi, badCells = floor(samples*0.1), edgeprob=edgeprob) data <- simmini$data ones <- which(data == 1) zeros <- which(data == 0) data[ones] <- rnorm(length(ones), 1, noise) data[zeros] <- rnorm(length(zeros), -1, noise) epiNEM::HeatmapOP(data, col = "RdBu", cexRow = 0.75, cexCol = 0.75, bordercol = "transparent", xrot = 0, dendrogram = "both") ## ----------------------------------------------------------------------------- lost <- sample(1:ncol(data), floor(ncol(data)*0.5)) colnames(data)[lost] <- "" ## ----fig.width=6,fig.height=5------------------------------------------------- res <- nempi(data) fit <- pifit(res, simmini, data) print(fit$auc) ressvm <- classpi(data) fit <- pifit(ressvm, simmini, data, propagate = FALSE) print(fit$auc) resnn <- classpi(data, method = "nnet") fit <- pifit(resnn, simmini, data, propagate = FALSE) print(fit$auc) resrf <- classpi(data, method = "randomForest") fit <- pifit(resrf, simmini, data, propagate = FALSE) print(fit$auc) col <- rgb(seq(0,1,length.out=10),seq(1,0,length.out=10), seq(1,0,length.out=10)) plot(res,heatlist=list(col="RdBu"),barlist=list(col=col)) ## ---- fig.height=6, fig.width=10, fig.cap=fig.cap1---------------------------- Gamma <- matrix(0, Pgenes, ncol(data)) rownames(Gamma) <- seq_len(Pgenes) colnames(Gamma) <- colnames(data) for (i in seq_len(Pgenes)) { Gamma[i, grep(paste0("^", i, "_|_", i, "$|_", i, "_|^", i, "$"), colnames(data))] <- 1 } Gamma <- apply(Gamma, 2, function(x) return(x/sum(x))) Gamma[is.na(Gamma)] <- 0 epiNEM::HeatmapOP(Gamma, col = "RdBu", cexRow = 0.75, cexCol = 0.75, bordercol = "transparent", xrot = 0, dendrogram = "both") colnames(data) <- sample(seq_len(Pgenes), ncol(data), replace = TRUE) res <- nempi(data, Gamma = Gamma) fit <- pifit(res, simmini, data) print(fit$auc) ## ----------------------------------------------------------------------------- Omega <- t(mnem::transitive.closure(res$res$adj))%*%res$Gamma epiNEM::HeatmapOP(Omega, col = "RdBu", cexRow = 0.75, cexCol = 0.75, bordercol = "transparent", xrot = 0, dendrogram = "both") ## ----------------------------------------------------------------------------- sessionInfo()