钢琴
钢琴2.15.0
库(钢琴)的数据(“gsa_input”)
头(gsa_input gsc美元,10)
# # g s # #[1]“g103”“s1”# #[2]“g106”“s19”# #[3]“g118”“s16”# #[4]“g130”“s21”# #[5]“g130”“s6”# #[6]“g131”“s46”# #[7]“g132”“s32”# #[8]“g132”“s3”# #[9]“g139”“s1”# #[10]“g140”“s21”
头(gsa_input pvals美元,10)
# g1 g2 g3 g4 g5 g6 ## 2.351900e-05 2.838832e-05 2.885141e-05 6.566243e-05 7.107615e-05 7.770070e-05 ## g7 g8 g9 g10 ## 1.436830e-04 1.532264e-04 1.626607e-04 1.644806e-04
头(gsa_input方向美元,10)
## g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 ## 1 -1 1 -1 1 -1 -1
geneSets <- loadGSC(gsa_input$gsc) geneSets
# #前50(50)基因集的名字:# #[1]“s1”“s19”“s16”“s21”“s6”“s46”“s32”“s3”“s34”“s14系列”“s7”“向”# #[13]“s5”“s42”“s2”“s11”“s22”“s8”“s15”“s10”“s33”“s37”“s35”“s43”# #[25]“s36”“s27”“肌力表现”“s9”“s23”“s30”s18“美国”“s25”“s41”“s24”“s20”“s39”# #[37]“s31”“s12”“s29”“s4”“s26”“s44”“s28”“s47”“s38”“s49”“s50”“s40”# #[49]“s45”“s48”# # # #前50(1136)基因的名字:## [1] "g103" "g139" "g150" "g235" "g304" "g479" "g130" "g157" "g302" "g319" "g32" "g329" "g372" "g373" "g403" ## [21] "g41" "g43" " g356 " "g476" "g521" "g527" "g554" "g581" "g585" ## [31] "g591" "g62" "g660" "g665" "g698" "g71" "g711" "g723" "g723" "g816" "g838" "g907" "g924" "g931" "g935" ## ##基因集大小总结:##最小第1曲"g243" "g251" "g372" "g373" "g403" ## [21] "g591" "g43" "g456" "g476" "g581" "g585" ## [41] "g758" "g77"## 2.00 20.50 39.00 39.50 53.75 95.00 ## ##没有其他信息可用。
gsares <- runGSA(gsa_input$pvals, gsa_input$directions, gsc = geneSets, nPerm = 500) #设置为500快速运行
注意:nPerm
设置为500以获得较短的运行时间,实际上使用更高的数字,例如10,000(默认)。
exploreGSAres (gsares)
这将打开一个带有交互界面的浏览器窗口,在其中可以详细查看结果。
这是的输出sessionInfo ()
在编译本文档的系统上。
## R正在开发中(不稳定)(22-10-25 r83175) ##平台:x86_64-pc-linux-gnu(64位)##运行在:Ubuntu 22.04.1 LTS ## ##矩阵产品:默认## BLAS: /home/biocbuild/bbs-3.17-bio /R/lib/libRblas。因此## LAPACK: /usr/lib/x86_64-linux-gnu/ LAPACK /liblapack.so.3.10.0 ## ## locale: ## [1] LC_CTYPE=en_US。UTF-8 LC_NUMERIC= c# [3] LC_TIME=en_GB LC_COLLATE= c# [5] LC_MONETARY=en_US。utf - 8 LC_MESSAGES = en_US。UTF-8 ## [7] LC_PAPER=en_US。UTF-8 LC_NAME= c# [9] LC_ADDRESS=C LC_TELEPHONE= c# [11] LC_MEASUREMENT=en_US。UTF-8 LC_IDENTIFICATION=C ## ##附加的基本包:## [1]stats graphics grDevices utils datasets methods base ## ##其他附加的包:## [1]piano_2.15.0 BiocStyle_2.27.0 ## ##通过命名空间加载(并没有附加):# [10] caTools_1.18.2 lattice_0.20-45 Biobase_2.59.0 ## [13] vctrs_0.5.0 tools_4.3.0 bitops_1.0-7 ## [16] generics_0.1.3 parallel_4.3.0 tibble_3.1.8 ## [19] fansi_1.0.3 cluster_2.1.4 pkgconfig_2.0.3 ## [22] Matrix_1.5-1 KernSmooth_2.23-20 data.table_1.14.4 ## [25] assertthat_0.2.1 lifecycle_1.0.3 compiler_4.3.0 ## [4] bslib_0.4.0 ggplot_3.6 visNetwork_2.1.2 ## [7] shinyjs_2.1.0 htmlwidgets_1.5.4 sets_1.0-21 ## [10] caTools_1.18.2# [40] jquerylib_0.1.4 ellipsis_0.3.2 relations_0.6-12 ## [43] DT_0.26 BiocParallel_1.33.0 cachem_1.0.6 ## [46] limma_3.55.0 mime_0.12 gtools_3.9.3 ## [49] tidyselect_1.2.0 digest_0.6.30 stringi_1.7.8 ## [52] slam_0.1-50 dplyr_1.0.10 bookdown_0.29 ## [55] cowplot_1.1.1 fastmap_1.1.0 grid_4.3.0 ## [34] htmltools_0.5.3 sass_0.4.2 yaml_2.3.6 ## [37] marray_1.77.0 later_1.3.0 pilar_1 .8.1 ## [40] jquerylib_0.26 BiocParallel_1.33.0magrittr_2.0.3 ## [61] utf8_1.2.2 scales_1.2.1 promises_1.2.0.1 ## [64] rmarkdown_2.17 igraph_1.3.5 shiny_1.7.3 ## [67] evaluate_0.17 knitr_1.40 rlang_1.0.6 ## [70] Rcpp_1.0.9 xtable_1.8-4 glue_1.6.2 ## [73] DBI_1.1.3 BiocManager_1.30.19 BiocGenerics_0.45.0 ## [76] shinydashboard_0.7.2 jsonlite_1.8.3 R6_2.5.1