## ----- echo = false ------------------------------------------------------------------------------------------------------------------- library(knitr) ## ---- eval = FALSE------------------------------------------------------------ # if(!requireNamespace("BiocManager", quietly = TRUE)) { # install.packages("BiocManager") # } # BiocManager::install("tradeSeq") ## ---- warning=F, message=F---------------------------------------------------- library(tradeSeq) library(RColorBrewer) library(SingleCellExperiment) library(slingshot) # For reproducibility RNGversion("3.5.0") palette(brewer.pal(8, "Dark2")) data(countMatrix, package = "tradeSeq") counts <- as.matrix(countMatrix) rm(countMatrix) data(crv, package = "tradeSeq") data(celltype, package = "tradeSeq") ## ---- out.width="50%", fig.asp=.6--------------------------------------------- plotGeneCount(curve = crv, clusters = celltype, title = "Colored by cell type") ## ---- eval=FALSE-------------------------------------------------------------- # ### Based on Slingshot object # set.seed(6) # icMat <- evaluateK(counts = counts, sds = crv, k = 3:7, nGenes = 100, # verbose = FALSE, plot = TRUE) # print(icMat[1:2, ]) # # ### Downstream of any trajectory inference method using pseudotime and cell weights # set.seed(7) # pseudotime <- slingPseudotime(crv, na=FALSE) # cellWeights <- slingCurveWeights(crv) # icMat2 <- evaluateK(counts = counts, pseudotime = pseudotime, cellWeights = cellWeights, # k=3:7, nGenes = 100, verbose = FALSE, plot = TRUE) ## ----------------------------------------------------------------------------- ### Based on Slingshot object set.seed(6) sce <- fitGAM(counts = counts, sds = crv, nknots = 6, verbose = FALSE) ### Downstream of any trajectory inference method using pseudotime and cell weights set.seed(7) pseudotime <- slingPseudotime(crv, na = FALSE) cellWeights <- slingCurveWeights(crv) sce <- fitGAM(counts = counts, pseudotime = pseudotime, cellWeights = cellWeights, nknots = 6, verbose = FALSE) ## ----------------------------------------------------------------------------- batch <- factor(rep(c("A", "B"), each = ncol(counts)/2)) U <- model.matrix(~batch) sceBatch <- fitGAM(counts = counts, U = U, sds = crv, nknots = 6, verbose = FALSE) ## ----------------------------------------------------------------------------- BPPARAM <- BiocParallel::bpparam() BPPARAM # lists current options BPPARAM$workers <- 2 # use 2 cores sce <- fitGAM(counts = counts, pseudotime = pseudotime, cellWeights = cellWeights, nknots = 6, verbose = FALSE, parallel=TRUE, BPPARAM = BPPARAM) ## ----------------------------------------------------------------------------- sce25 <- fitGAM(counts = counts, pseudotime = pseudotime, cellWeights = cellWeights, nknots = 6, verbose = FALSE, genes = 1:25) ## ----------------------------------------------------------------------------- library(mgcv) control <- gam.control() control$maxit <- 1000 #set maximum number of iterations to 1K # pass to control argument of fitGAM as below: # # gamList <- fitGAM(counts = counts, # pseudotime = slingPseudotime(crv, na = FALSE), # cellWeights = slingCurveWeights(crv), # control = control) ## ----------------------------------------------------------------------------- gamList <- fitGAM(counts, pseudotime = slingPseudotime(crv, na = FALSE), cellWeights = slingCurveWeights(crv), nknots = 6, sce = FALSE) ## ----------------------------------------------------------------------------- summary(gamList[["Irf8"]]) ## ---- eval=FALSE-------------------------------------------------------------- # pvalLineage <- getSmootherPvalues(gamList) # statLineage <- getSmootherTestStats(gamList) ## ----------------------------------------------------------------------------- sessionInfo()