如果(!requireNamespace("BiocManager", quiet = TRUE)) install.packages("BiocManager")::install("SingleCellMultiModal")
库(SingleCellMultiModal)库(MultiAssayExperiment)
G&T-seq是同一细胞的Picoplex扩增gDNA测序(基因组)和SMARTSeq2扩增cDNA测序(转录组)的组合。有关更多信息,请参见麦考利等人(2015).
用户可以使用默认选项查看可用的数据集
GTseq("mouse_embryo_8_cell", mode = "*", dry.run = TRUE)
## snapshotDate(): 2022-10-24
## rdatadaterremoved ## 1 ## 2
或者简单地跑步:
GTseq ()
## snapshotDate(): 2022-10-24
## rdatadaterremoved ## 1 ## 2
获取实际数据集:
gts <- GTseq(dry.run = FALSE
一个MultiAssayExperiment对象,包含2个列出的实验,使用用户自定义名称和各自的类。##包含一个长度为2的ExperimentList类对象:## [1]genomic: raggeexperiment with 2366行,112列## [2]transcriptomic: singlecelexperiment with 24029行,112列##功能:## experiments() -获取ExperimentList实例## colData() -主/表型DataFrame ## sampleMap() -样本协调DataFrame ## ' $ ', '[', '[[' -提取colData列,子集,或实验## *格式()-转换为长或宽的DataFrame ## assays() -转换ExperimentList为矩阵的SimpleList ## exportClass() -保存数据到平面文件
检查用G&T-seq检测的112个小鼠胚胎细胞的可用元数据:
colData (gts)
##数据框架与112行和3列##特征。有机体。Characteristics.sex。## <角色> <角色> ## cell1小家鼠雌性## cell2小家鼠雌性## cell3小家鼠雄性## cell4小家鼠雄性## cell5小家鼠雌性## ... ... ...cell108小家鼠雌性cell109小家鼠雄性cell110小家鼠雄性cell111小家鼠雌性cell112小家鼠雌性##特征。cell.type。## ## cell1 8_cell_stage_single_..## cell2 8_cell_stage_single_..## cell3 8_cell_stage_single_..## cell4 8_cell_stage_single_..## cell5 8_cell_stage_single_..## ... ... ## cell108 8_cell_stage_single_.. ## cell109 8_cell_stage_single_.. ## cell110 8_cell_stage_single_.. ## cell111 8_cell_stage_single_.. ## cell112 8_cell_stage_single_..
看一看sampleMap
:
sampleMap (gts)
##数据框架224行3列##分析主colname ## <因子> <字符> <字符> ## 1转录组细胞1 ERR861694 ## 2转录组细胞2 ERR861750 ## 3转录组细胞3 ERR861695 ## 4转录组细胞4 ERR861751 ## 5转录组细胞5 ERR861696 ## ... ... ... ...220基因组细胞108 ERR863164基因组细胞109 ERR863109 222基因组细胞110 ERR863165 223基因组细胞111 ERR863110 224基因组细胞112 ERR863166
访问从scDNA-seq检测到的整数拷贝数:
头(化验(gts,“基因组”))[,1:4]
## chr4:145000001-148500000 NA NA NA NA NA NA NA NA NA ## chr4:145000001- 16500000 NA NA NA NA NA NA NA ## chrX:21500001-36000000 NA NA NA NA NA NA NA NA NA
要从scRNA-seq中获取量化的原始读计数:
Head(测定(gts,“转录组”))[,1:4]
## ensmusg00000000003 0000 ## ensmusg00000000028 11 17 79 94 ## ensmusg00000000031 0000001 0 ## ensmusg00000000049 0000000
有关协议信息,请参见麦考利等人(2016).
sessionInfo ()
## R正在开发中(不稳定)(2022-10-25 r83175) ##平台:x86_64-pc-linux-gnu(64位)##运行在Ubuntu 22.04.1 LTS ## ##矩阵产品:默认## BLAS: /home/biocbuild/bbs-3.17-bioc/R/lib/libRblas。so ## LAPACK: /usr/lib/x86_64-linux-gnu/ LAPACK /liblapack.so.3.10.0 ## ## locale: ## [1] LC_CTYPE=en_US。UTF-8 LC_NUMERIC= c# # [3] LC_TIME=en_GB LC_COLLATE= c# # [5] LC_MONETARY=en_US。utf - 8 LC_MESSAGES = en_US。UTF-8 ## [7] LC_PAPER=en_US。UTF-8 LC_NAME= c# # [9] LC_ADDRESS=C lc_phone = c# # [11] LC_MEASUREMENT=en_US。UTF-8 LC_IDENTIFICATION=C ## ##附加的基本包:## [1]stats4 stats graphics grDevices utils datasets methods ##[8]基础## ##其他附加包:## [1] SingleCellMultiModal_1.11.0 MultiAssayExperiment_1.25.1 ## [5] SummarizedExperiment_1.29.0 Biobase_2.59.0 ## [7] genomicranges_1.1.1.0 GenomeInfoDb_1.35.0 ## [9] IRanges_2.33.0 S4Vectors_0.37.0 ## [11] BiocGenerics_0.45.0 MatrixGenerics_1.11.0 ## [13] matrixStats_0.62.0 BiocStyle_2.27.0 ## ##通过命名空间加载(并且没有附加):[1] [3] formatr_1 .1.3 bitops_1.0-7 ## [5] magrittr_2.0.3 compiler_4.3.0 ## [9] png_0.1-7 vctrs_0.5.0 ## [11] string_1 .4.1 pkgconfig_2.0.3 ## [13] SpatialExperiment_1.9.0 crayon_1.5.2 ## [15] fastmap_1.1.0 magick_2.7.3 ## [17] dbplyr_2.2.1 XVector_0.39.0 ## [23] rmarkdown_2. 2.2 promises_1.2.0.1 ## [27] zlibbioc_1.45.0 ## [27] zlibbioc_1. 3.5 ## [25] bit_4.0.4 xfun_0.34 ## [27] zlibbioc_1. 0 ##cachem_1.0.6 # # [29] beachmat_2.15.0 jsonlite_1.8.3 # # [31] blob_1.2.3 later_1.3.0 # # [33] rhdf5filters_1.11.0 DelayedArray_0.25.0 # # [35] Rhdf5lib_1.21.0 BiocParallel_1.33.0 # # [37] interactiveDisplayBase_1.37.0 parallel_4.3.0 # # [39] R6_2.5.1 bslib_0.4.0 # # [41] stringi_1.7.8 limma_3.55.0 # # [43] jquerylib_0.1.4 Rcpp_1.0.9 # # [45] bookdown_0.29 assertthat_0.2.1 # # [47] knitr_1.40 R.utils_2.12.1 # # [49] BiocBaseUtils_1.1.0 httpuv_1.6.6 # # [51] Matrix_1.5-1 tidyselect_1.2.0 # # [53] yaml_2.3.6codetools_0.2-18 # # [55] curl_4.3.3 lattice_0.20-45 # # [57] tibble_3.1.8 withr_2.5.0 # # [59] shiny_1.7.3 KEGGREST_1.39.0 # # [61] evaluate_0.17 BiocFileCache_2.7.0 # # [63] ExperimentHub_2.7.0 Biostrings_2.67.0 # # [65] pillar_1.8.1 BiocManager_1.30.19 # # [67] filelock_1.0.2 generics_0.1.3 # # [69] rcurl_1.98 - 1.9 BiocVersion_3.17.0 # # [71] sparseMatrixStats_1.11.0 xtable_1.8-4 # # [73] glue_1.6.2 tools_4.3.0 # # [75] AnnotationHub_3.7.0 locfit_1.5 - 9.6 # # [77] rhdf5_2.43.0 grid_4.3.0 # # [79]DropletUtils_1.19.0 AnnotationDbi_1.61.0 ## [81] edgeR_3.41.0 GenomeInfoDbData_1.2.9 ## [83] HDF5Array_1.27.0 cli_3.4.1 ## [85] rappdirs_0.3.3 fansi_1.0.3 ## [87] dplyr_1.0.10 r.d astss3_1 .8.2 ## [89] sass_0.4.2 digest_0.6.30 ## [91] dqrng_0.3.0 rjson_0.2.21 ## [93] memoise_2.0.1 htmltools_0.5.3 ## [95] R.oo_1.25.0 lifecycle_1.0.3 ## [97] httr_1.4.4 mime_0.12 ## [99] bit64_4.0.5
麦考利,Iain C, Wilfried Haerty, Parveen Kumar,李杨一,胡晓明,Mabel J Teng, Mubeen Goolam,等。2015。G&T-seq:单细胞基因组和转录组的平行测序Nat方法。12(6): 519-22。
麦考利,伊恩·C,梅布尔·J·滕,威尔弗里德·哈尔蒂,帕文·库马尔,克里斯·P·庞廷,蒂埃里·沃特,2016。“利用G&T-seq分离和平行测序单细胞基因组和转录组”Protoc Nat。11(11): 2081-2103。