Package 'gsean'

July 3, 2022

Type Package

Title Gene Set Enrichment Analysis with Networks

Description Biological molecules in a living organism seldom work individually. They usually interact each other in a cooperative way. Biological process is too complicated to understand without considering such interactions. Thus, network-based procedures can be seen as powerful methods for studying complex process. However, many methods are devised for analyzing individual genes. It is said that techniques based on biological networks such as gene coexpression are more precise ways to represent information than those using lists of genes only. This package is aimed to integrate the gene expression and biological network. A biological network is constructed from gene expression data and it is used for Gene Set Enrichment Analysis.

Version 1.16.0 **Date** 2019-04-29

Author Dongmin Jung

Maintainer Dongmin Jung <dmdmjung@gmail.com>

Depends R (>= 3.5), fgsea, PPInfer

Suggests SummarizedExperiment, knitr, plotly, RANKS, WGCNA, rmarkdown

License Artistic-2.0

biocViews Software, StatisticalMethod, Network, GraphAndNetwork, GeneSetEnrichment, GeneExpression, NetworkEnrichment, Pathways, DifferentialExpression

NeedsCompilation no

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/gsean

git_branch RELEASE_3_15

git_last_commit 3bfb612

git_last_commit_date 2022-04-26

Date/Publication 2022-07-03

2 gsean-package

R topics documented:

sean-package
entrality_gsea
xprs2adj
O_dme
sean 5
EGG_hsa 7
bel_prop_gsea
9

gsean-package

Gene Set Enrichment Analysis with Networks

Description

Index

Biological molecules in a living organism seldom work individually. They usually interact each other in a cooperative way. Biological process is too complicated to understand without considering such interactions. Thus, network-based procedures can be seen as powerful methods for studying complex process. However, many methods are devised for analyzing individual genes. It is said that techniques based on biological networks such as gene co-expression are more precise ways to represent information than those using lists of genes only. This package is aimed to integrate the gene expression and biological network. A biological network is constructed from gene expression data and it is used for Gene Set Enrichment Analysis.

Details

The DESCRIPTION file: This package was not yet installed at build time.

Index: This package was not yet installed at build time.

Author(s)

Dongmin Jung

Maintainer: Dongmin Jung <dmdmjung@gmail.com>

centrality_gsea 3

centra]	litv	gsea
Central	гт су_	_gsca

Gene Set Enrichment Analysis with centrality measure

Description

GSEA is performed with centrality measure

Usage

Arguments

geneset list of gene sets

x Named vector of gene-level statistics. Names should be the same as in gene sets.

adjacency adjacency matrix

pseudo pseudo number for log2 transformation (default: 1)

nperm number of permutations (default: 1000)

centrality centrality measure, degree centrality or node strength is default

weightParam weight parameter value for the centrality measure, equally weight if weight-

Param = 0 (default: 1)

minSize minimal size of a gene set (default: 1)
maxSize maximal size of a gene set (default: Inf)
gseaParam GSEA parameter value (default: 1)

nproc see fgsea::fgsea BPPARAM see fgsea::fgsea

Value

GSEA result

Author(s)

Dongmin Jung

See Also

fgsea::fgsea

4 exprs2adj

Examples

```
data(examplePathways)
data(exampleRanks)
exampleRanks <- exampleRanks[1:100]
adjacency <- diag(length(exampleRanks))
rownames(adjacency) <- names(exampleRanks)
set.seed(1)
result.GSEA <- centrality_gsea(examplePathways, exampleRanks, adjacency)</pre>
```

exprs2adj

Convert gene expression data to adjacency matrix by using correlation coefficients

Description

A biological network is constructed from gene expression data and it is used for Gene Set Enrichment Analysis.

Usage

```
exprs2adj(x, pseudo = 1, ...)
```

Arguments

x gene expression data
 pseudo pseudo number for log2 transformation (default: 1)
 ... additional parameters for correlation; see WGCNA::cor

Value

adjacency matrix

Author(s)

Dongmin Jung

See Also

```
fgsea::fgsea, WGCNA::cor
```

Examples

```
data(exampleRanks)
Names <- names(exampleRanks)
exprs <- matrix(rnorm(10*length(exampleRanks)), ncol = 10)
adjacency <- exprs2adj(exprs)</pre>
```

GO_dme 5

GO_dme

Gene Ontology terms with gene ID for Drosophila melanogaster

Description

The data set contains all Gene Ontology terms for Drosophila melanogaster and genes are identified by gene ID. There are 2823 categories.

Usage

GO_dme

Format

a list of gene sets

Value

GO gene sets

Author(s)

Dongmin Jung

Source

http://www.go2msig.org/cgi-bin/prebuilt.cgi?taxid=7227

Examples

```
load(system.file("data", "GO_dme.rda", package = "gsean"))
```

gsean

Gene Set Enrichment Analysis with Networks

Description

GSEA or ORA is performed with networks from gene expression data

Usage

```
gsean(geneset, x, exprs, pseudo = 1, threshold = 0.99, nperm = 1000,
    centrality = function(x) rowSums(abs(x)), weightParam = 1,
    minSize = 1, maxSize = Inf, gseaParam = 1, nproc = 0,
    BPPARAM = NULL, corParam = list(), tmax = 10, ...)
```

6 gsean

Arguments

geneset list of gene sets

x Named vector of gene-level statistics for GSEA or set of genes for ORA. Names

should be the same as in gene sets.

exprs gene expression data

pseudo pseudo number for log2 transformation (default: 1)

threshold threshold of correlation for nodes to be considered neighbors for ORA (default:

0.99)

nperm number of permutations (default: 1000)

centrality centrality measure, degree centrality or node strength is default

weightParam weight parameter value for the centrality measure, equally weight if weight-

Param = 0 (default: 1)

minSize minimal size of a gene set (default: 1)
maxSize maximal size of a gene set (default: Inf)
gseaParam GSEA parameter value (default: 1)

nproc see fgsea::fgsea
BPPARAM see fgsea::fgsea

corParam additional parameters for correlation; see WGCNA::cor

tmax maximum number of iterations for label propagtion (default: 10)
... additional parameters for label propagation; see RANKS::label.prop

Value

GSEA result

Author(s)

Dongmin Jung

See Also

```
exprs2adj, label_prop_gsea, centrality_gsea
```

Examples

```
data(examplePathways)
data(exampleRanks)
exampleRanks <- exampleRanks[1:100]
Names <- names(exampleRanks)
exprs <- matrix(rnorm(10*length(exampleRanks)), ncol = 10)
rownames(exprs) <- names(exampleRanks)
set.seed(1)
result.GSEA <- gsean(examplePathways, exampleRanks, exprs)</pre>
```

KEGG_hsa 7

KEGG_hsa

KEGG pathways with gene symbol for human

Description

The data set contains 186 KEGG pathways for Drosophila melanogaster and genes are identified by gene symbol.

Usage

KEGG_hsa

Format

a list of gene sets

Value

KEGG gene sets

Author(s)

Dongmin Jung

Source

http://software.broadinstitute.org/gsea/msigdb/collections.jsp

Examples

```
load(system.file("data", "KEGG_hsa.rda", package = "gsean"))
```

label_prop_gsea

Over-representaion analysis with the label propagation algorithm

Description

ORA is performed by GSEA with the label propagation algorithm

Usage

8 label_prop_gsea

Arguments

geneset list of gene sets

x set of genes

adjacency adjacency matrix

threshold threshold of correlation for nodes to be considered neighbors (default: 0.99)

nperm number of permutations (default: 1000)
minSize minimal size of a gene set (default: 1)
maxSize maximal size of a gene set (default: Inf)
gseaParam GSEA parameter value (default: 1)

nproc see fgsea::fgsea
BPPARAM see fgsea::fgsea

... additional parameters for label propagation; see RANKS::label.prop

Value

GSEA result

Author(s)

Dongmin Jung

See Also

fgsea::fgsea, RANKS::label.prop

Examples

```
data(examplePathways)
data(exampleRanks)
exampleRanks <- exampleRanks[1:100]
geneNames <- names(exampleRanks)
set.seed(1)
x <- sample(geneNames, 10)
adjacency <- diag(length(exampleRanks))
rownames(adjacency) <- geneNames
result.GSEA <- label_prop_gsea(examplePathways, x, adjacency)</pre>
```

Index

```
centrality_gsea, 3
exprs2adj, 4

G0_dme, 5
gsean, 5
gsean-package, 2

KEGG_hsa, 7

label_prop_gsea, 7
```