## ----数据,缓存= true ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------库(DMRSCAN)数据(dmrscan.methylationdata)##染色体22的负载甲基化数据,具有52018 CPG的测量数据(DMRSCAN.PHENOTYPES)## LOAD表型(甲基化数据的终点)## ---- obs,cache = true,depenson ='data'------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- #Observations < - appl(dmrscan.methylationdata,1,函数(x,y){#summary(y〜x,#family = birnemial = binomial(link = = = =“ logit”)))$系数[2,3]},#y = dmrscan.phenotypes)观察值< - applation(dmrscan.methylationdata,1,function(x,y)系数[2,3]},y = dmrscan.phenotypes)头(观测)## ------------------------------------------------------------------------------------------------------------------------矩阵(as.integer(unlist(strsplit(names(观察)),split =“ chr | [。]”)),ncol = 3,byrow = true)[, - 1] head(pos)## -------------- cache = true,depenson = pos ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ##测试群集中的最小CPG数量.cpg <-3 ## maxium距离(以碱基对为基础)##在将其分解为两个分离群集max.gap <-750 ## ---- reg,reg,cache = true,depenson ='之前,depenson ='pos'-------------------------------------- regions <- makeCpGregions(observations = observations, chr= pos [,1],pos = pos [,2],maxgap = 750,mincpg = 3)## ---------------------------------------------------------------------------------------------------------尺寸<-3:7 ##滑动窗口中的CPG数(可以是一个单个数字或序列)n.cpg < - sum(sapply(区域,长度))##要测试的CpG数量##估计窗口阈值,基于CPGS和窗口大小的数量##使用重要采样窗口。nprobe = n.cpg,windowsize = window。大小,方法 = "siegmund") ## ----res, cache = TRUE, depenson = 'thres'------------------------------------ window.thresholds.importancSampling <- estimateWindowThreshold(nProbe = n.CpG, windowSize = window.sizes, method = "sampling", mcmc = 10000) dmrscan.results <- dmrscan(observations = regions, windowSize = window.sizes, windowThreshold = window.thresholds.importancSampling) ## Print the result print(dmrscan.results) ## ----res2, cache = TRUE, depenson = 'thres'----------------------------------- dmrscan.results <- dmrscan(observations = regions, windowSize = window.sizes, windowThreshold = window.thresholds.siegmund) ## Print the result print(dmrscan.results) ## ---- eval = FALSE------------------------------------------------------------ # # Not run due to time constraints. # window.threshold.mcmc <- estimateWindowThreshold(nProbe = n.CpG, windowSize = window.sizes, # method = "mcmc", mcmc = 1000, nCPU = 1, submethod = "arima", # model = list(ar = c(0.1,0.03), ma = c(0.04), order = c(2,0,1))) # # dmrscan.results <- dmrscan(observations = regions, windowSize = window.sizes, # windowThreshold = window.thresholds.mcmc) # # Print the result # print(dmrscan.results) ## ----------------------------------------------------------------------------- sessionInfo()