## ----包括= false ---------------------------------------------------------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ---- eval=FALSE------------------------------------------------------------------------------------------------#if(!sireseenamespace(“ biocmanager”,悄悄= true))#install.packages(“ biocmanager”)####biocmanager :: install(gseamining'gseamining')## ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------#install.packages(“ devtools”)#如果您尚未安装“ devtools” package#liberdy(devtools)#devtools :: install_github(“ oriolarques/gseamining”)## ----评估= false -------------------------------------------------------------------------------------------------------------------------------------------------------------------##一个基因派包含三个功能:##1.##vector:折叠更改或其他类型的数值变量###2。姓名向量:每个数字有一个名称,相应的基因ID##3。分类向量:应该以减少顺序排序#tabletop_p30 < - as.data.frame(tabletop_p30)#genelist = genelist = tabletop_p30 [,2]#names(genelist)(genelist)= as.Character(tabletop_p30 [,1])## --------------------------------------------------------------------------------------------------------------------------------------------------------------------#库(clusterProfiler)##从msigdb#gmtc2 < - 读取.gmt文件read.gmt(“ gmt files/c2.all.v7.1.symbols.gmt”)#gmtc5 < - read.gmt('gmt files/c5.all.v7.1.symbols.gmts.gmt')#gmthall <---read.gmt('gmt files/h.all.v7.1.symbols.gmt')###合并所有基因集#gmt_all <-rbind(gmtc2,gmtc2,gmtc5,gmthall,gmthall)## ----------------------------------------------------------------------------------------------------------------------------------------- # GSEA_p30<-GSEA(geneList, TERM2GENE = gmt_all, nPerm = 1000, pvalueCutoff = 0.5) # # # Selection of gene sets with a specific thershold in terms of NES and p.adjust # genesets_sel <- GSEA_p30@result ## ----------------------------------------------------------------------------- # Structure of the data included in the package data('genesets_sel', package = 'GSEAmining') tibble::glimpse(genesets_sel) ## ----------------------------------------------------------------------------- library(GSEAmining) data("genesets_sel", package = 'GSEAmining') gs.filt <- gm_filter(genesets_sel, p.adj = 0.05, neg_NES = 2.6, pos_NES = 2) ## ----setup-------------------------------------------------------------------- # Create an object that will contain the cluster of gene sets. gs.cl <- gm_clust(gs.filt) ## ---- fig.height = 7, fig.width = 7------------------------------------------- gm_dendplot(gs.filt, gs.cl) ## ---- fig.height = 7, fig.width = 7------------------------------------------- gm_dendplot(gs.filt, gs.cl, col_pos = 'orange', col_neg = 'black', rect = TRUE, dend_len = 20, rect_len = 2) ## ---- message = FALSE, fig.height = 7, fig.width = 7-------------------------- gm_enrichterms(gs.filt, gs.cl) ## ---- message = FALSE, fig.height = 7, fig.width = 7-------------------------- gm_enrichterms(gs.filt, gs.cl, clust = FALSE, col_pos = 'chocolate3', col_neg = 'skyblue3') ## ---- message = FALSE, fig.height = 12, fig.width = 7.2----------------------- gm_enrichcores(gs.filt, gs.cl) ## ---- eval=FALSE-------------------------------------------------------------- # gm_enrichreport(gs.filt, gs.cl, output = 'gm_report') ## ----------------------------------------------------------------------------- sessionInfo()