## ----- echo = false ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 选项(width = 110)## ----消息= false ------------------------------------------------------------------------------------------------------------------------------------------------------------------库(seqarray)库(Saigegds)#seqarray gds格式的基因型文件(1000 Genomes phase1,Chromosome 22)(geno_fn <-seqexampleFileName(“ kg_phase1”))## ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- #在软件包中打开一个seqarray文件(1000 Genomes phase1,染色体22)gds <-seqopen(geno_fn)## -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------library(SNPRelate) set.seed(1000) snpset <- snpgdsLDpruning(gds) str(snpset) snpset.id <- unlist(snpset, use.names=FALSE) # get the variant IDs of a LD-pruned set head(snpset.id) ## ----------------------------------------------------------------------------------------------------------- grm_fn <- "grm_geno.gds" seqSetFilter(gds, variant.id=snpset.id) # export to a GDS genotype file without annotation data seqExport(gds, grm_fn, info.var=character(), fmt.var=character(), samp.var=character()) ## ----------------------------------------------------------------------------------------------------------- # close the file seqClose(gds) ## ----------------------------------------------------------------------------------------------------------- set.seed(1000) sampid <- seqGetData(grm_fn, "sample.id") # sample IDs in the genotype file pheno <- data.frame( sample.id = sampid, y = sample(c(0, 1), length(sampid), replace=TRUE, prob=c(0.95, 0.05)), x1 = rnorm(length(sampid)), x2 = rnorm(length(sampid)), stringsAsFactors = FALSE) head(pheno) grm_fn ## ----echo=FALSE--------------------------------------------------------------------------------------------- glmm <- readRDS(system.file("extdata", "v_glmm.rds", package="SAIGEgds")) ## ----------------------------------------------------------------------------------------------------------- # genetic variants stored in the file geno_fn geno_fn # calculate, using 2 processes assoc <- seqAssocGLMM_SPA(geno_fn, glmm, mac=10, parallel=2) head(assoc) # filtering based on p-value assoc[assoc$pval < 5e-4, ] ## ----------------------------------------------------------------------------------------------------------- # save to 'assoc.gds' seqAssocGLMM_SPA(geno_fn, glmm, mac=10, parallel=2, res.savefn="assoc.gds") ## ----------------------------------------------------------------------------------------------------------- # open the GDS file (f <- openfn.gds("assoc.gds")) # get p-values pval <- read.gdsn(index.gdsn(f, "pval")) summary(pval) closefn.gds(f) ## ----------------------------------------------------------------------------------------------------------- res <- seqSAIGE_LoadPval("assoc.gds") head(res) ## ----fig.width=6, fig.height=3, fig.align='center'---------------------------------------------------------- library(ggmanh) g <- manhattan_plot(assoc, pval.colname="pval", chr.colname="chr", pos.colname="pos", x.label="Chromosome 22") g ## ----fig.width=3, fig.height=3, fig.align='center'---------------------------------------------------------- # QQ plot qqunif(assoc$pval) ## ----------------------------------------------------------------------------------------------------------- sessionInfo() ## ----echo=FALSE--------------------------------------------------------------------------------------------- unlink(c("grm_geno.gds", "assoc.gds"), force=TRUE)