## ------- eval = true,消息= false ----------------------------------------------------------------------------------------------------------------------------------------- library(SCOPE) library(WGSmapp) library(BSgenome.Hsapiens.UCSC.hg38) bamfolder <- system.file("extdata", package = "WGSmapp") bamFile <- list.files(bamfolder, pattern = '*.dedup.bam$') bamdir <- file.path(bamfolder, bamFile) sampname_raw <- sapply(strsplit(bamFile, ".", fixed = TRUE), "[", 1) bambedObj <- get_bam_bed(bamdir = bamdir, sampname = sampname_raw, hgref = "hg38") ref_raw <- bambedObj$ref ## ---- eval=TRUE, message=FALSE------------------------------------------------ mapp <- get_mapp(ref_raw, hgref = "hg38") head(mapp) gc <- get_gc(ref_raw, hgref = "hg38") values(ref_raw) <- cbind(values(ref_raw), DataFrame(gc, mapp)) ref_raw ## ---- eval=FALSE-------------------------------------------------------------- # library(BSgenome.Mmusculus.UCSC.mm10) # mapp <- get_mapp(ref_raw, hgref = "mm10") # gc <- get_gc(ref_raw, hgref = "mm10") ## ---- eval=TRUE--------------------------------------------------------------- # Getting raw read depth coverageObj <- get_coverage_scDNA(bambedObj, mapqthres = 40, seq = 'paired-end', hgref = "hg38") Y_raw <- coverageObj$Y ## ---- eval=TRUE--------------------------------------------------------------- QCmetric_raw <- get_samp_QC(bambedObj) qcObj <- perform_qc(Y_raw = Y_raw, sampname_raw = sampname_raw, ref_raw = ref_raw, QCmetric_raw = QCmetric_raw) Y <- qcObj$Y sampname <- qcObj$sampname ref <- qcObj$ref QCmetric <- qcObj$QCmetric ## ---- eval=TRUE, message=FALSE------------------------------------------------ # get gini coefficient for each cell Gini <- get_gini(Y_sim) ## ---- eval=TRUE, message=TRUE------------------------------------------------- # first-pass CODEX2 run with no latent factors normObj.sim <- normalize_codex2_ns_noK(Y_qc = Y_sim, gc_qc = ref_sim$gc, norm_index = which(Gini<=0.12)) # Ploidy initialization ploidy.sim <- initialize_ploidy(Y = Y_sim, Yhat = normObj.sim$Yhat, ref = ref_sim) # If using high performance clusters, parallel computing is # easy and improves computational efficiency. Simply use # normalize_scope_foreach() instead of normalize_scope(). # All parameters are identical. normObj.scope.sim <- normalize_scope_foreach(Y_qc = Y_sim, gc_qc = ref_sim$gc, K = 1, ploidyInt = ploidy.sim, norm_index = which(Gini<=0.12), T = 1:5, beta0 = normObj.sim$beta.hat, nCores = 2) # normObj.scope.sim <- normalize_scope(Y_qc = Y_sim, gc_qc = ref_sim$gc, # K = 1, ploidyInt = ploidy.sim, # norm_index = which(Gini<=0.12), T = 1:5, # beta0 = beta.hat.noK.sim) Yhat.sim <- normObj.scope.sim$Yhat[[which.max(normObj.scope.sim$BIC)]] fGC.hat.sim <- normObj.scope.sim$fGC.hat[[which.max(normObj.scope.sim$BIC)]] ## ---- eval=FALSE-------------------------------------------------------------- # plot_EM_fit(Y_qc = Y_sim, gc_qc = ref_sim$gc, norm_index = which(Gini<=0.12), # T = 1:5, # ploidyInt = ploidy.sim, beta0 = normObj.sim$beta.hat, # filename = "plot_EM_fit_demo.pdf") ## ---- eval=FALSE-------------------------------------------------------------- # # Group-wise ploidy initialization # clones <- c("normal", "tumor1", "normal", "tumor1", "tumor1") # ploidy.sim.group <- initialize_ploidy_group(Y = Y_sim, Yhat = Yhat.noK.sim, # ref = ref_sim, groups = clones) # ploidy.sim.group # # # Group-wise normalization # normObj.scope.sim.group <- normalize_scope_group(Y_qc = Y_sim, # gc_qc = ref_sim$gc, # K = 1, ploidyInt = ploidy.sim.group, # norm_index = which(clones=="normal"), # groups = clones, # T = 1:5, # beta0 = beta.hat.noK.sim) # Yhat.sim.group <- normObj.scope.sim.group$Yhat[[which.max( # normObj.scope.sim.group$BIC)]] # fGC.hat.sim.group <- normObj.scope.sim.group$fGC.hat[[which.max( # normObj.scope.sim.group$BIC)]] ## ---- eval=TRUE, message=FALSE------------------------------------------------ chrs <- unique(as.character(seqnames(ref_sim))) segment_cs <- vector('list',length = length(chrs)) names(segment_cs) <- chrs for (chri in chrs) { message('\n', chri, '\n') segment_cs[[chri]] <- segment_CBScs(Y = Y_sim, Yhat = Yhat.sim, sampname = colnames(Y_sim), ref = ref_sim, chr = chri, mode = "integer", max.ns = 1) } iCN_sim <- do.call(rbind, lapply(segment_cs, function(z){z[["iCN"]]})) ## ---- eval=FALSE-------------------------------------------------------------- # plot_iCN(iCNmat = iCN_sim, ref = ref_sim, Gini = Gini, # filename = "plot_iCN_demo") ## ----------------------------------------------------------------------------- sessionInfo()