## -----选项,echo = false --------------------------------------------------------------------------------------------------------------------------------------------------------------------选项(width = 72)## ---- mpload,message = false,cache = true ---------------------------------------------------------------------------------------------------- library(methylPipe) library(BSgenome.Hsapiens.UCSC.hg18) ## ----methcall,message=FALSE,cache=TRUE-------------------------------- file_loc <- system.file('extdata', 'test_methcall', package='methylPipe') meth.call(files_location= file_loc,output_folder = tempdir(),no_overlap = true,read.context =“ cpg”,nproc = 1)## ---- bsprepare,message = false,cache = true ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------》,output_folder = file_loc,tabix =“/to to to to to to to to-tabix/”)uncov_gr <-granges(rle('chr20'),iranges(c(14350,69251,84185),C(18349,73250,88184))h1data <-system.file('extdata','h1_chr20_cg_10k_tabix_out.txt.gz',package ='methylPipe')--- bsdataset,消息= true,cache = true --------------------------------- IMR90data <- system.file('extdata', 'IMR90_chr20_CG_10k_tabix_out.txt.gz', package='methylPipe')imr90.db <-bsdata(file = imr90data,uncov = uncov_gr,org = hsapiens)h1.imr90.set <-bsdataset(org = hsapiens,group = c(“ c”,“ e”),imr90 = imr90。db,h1 = h1.db)h1.imr90.set ## ----- met1,图。width = 6,图。= true ----- gr <-granges(“ chr20”,iranges(1,5e5))sres <-mcsmoothing(h1.db,gr,gr,corcefun ='sum',nbins = 50,plot = true)## ---- desstats,图。width = 6,图。height= 5,out.width ='。85 \\ textwidth',message = false,figes.keep =“ all”,fig.show =“ asis”,cache,cache'= true ---- stats.sets.set <-bsdataset(org = hsapiens,group = c(“ c”,“ c”,“ c”,“ e”,“ e”),imr_1 = imr90.db,imr_2 = imr90.db, H1_1=H1.db,H1_2=H1.db) stats_res <- methstats(stats.set,chrom="chr20",mcClass='mCG', Nproc=1) stats_res ## ----met2,message=FALSE,cache=TRUE------------------------------------ gr_file <- system.file('extdata', 'GR_chr20.Rdata', package='methylPipe') load(gr_file) resmC <- mapBSdata2GRanges(GenoRanges=GR_chr20, Sample=H1.db, context='CG') head(resmC[[4]]) ## ----met3,message=FALSE,cache=TRUE------------------------------------ gec.H1 <- profileDNAmetBin(GenoRanges=GR_chr20, Sample=H1.db, mcCLASS='mCG', nbins=3) binmC(gec.H1)[4:5,] binC(gec.H1)[4:5,] binrC(gec.H1)[4:5,] ## ----subset,message=FALSE,cache=TRUE---------------------------------- gec1 <- gec.H1[start(gec.H1) < 153924] gec2 <- gec.H1[start(gec.H1) > 153924] ## ----gecset,message=FALSE,cache=TRUE---------------------------------- gecIMR_file <- system.file('extdata', 'gec.IMR90.Rdata', package='methylPipe') load(gecIMR_file) gel <- GElist(gecIMR90=gec.IMR90, gecH1=gec.H1) print(names(gel)) ## ----pmeth,fig.width=5,fig.height=5,out.width='.85\\textwidth',message=FALSE,cache=TRUE---- library(TxDb.Hsapiens.UCSC.hg18.knownGene) txdb <- TxDb.Hsapiens.UCSC.hg18.knownGene gel <- GElist(gecIMR90=gec.IMR90[1:10], gecH1=gec.H1[1:10]) plotMeth(gel, colors=c("red","blue"), datatype=c("mC","mC"), yLim=c(.025, .025), brmeth=list(IMR90=IMR90.db, H1=H1.db), mcContext="CG", transcriptDB=txdb, chr="chr20", start=14350, end=277370, org=Hsapiens) ## ----dmr1,message=FALSE,cache=TRUE------------------------------------ DMRs <- findDMR(object= H1.IMR90.set, Nproc=1, ROI=GR_chr20, MCClass='mCG', dmrSize=6, dmrBp=800) head(DMRs) ## ----dmr2,message=FALSE,cache=TRUE------------------------------------ hyper.DMRs.conso <- consolidateDMRs(DmrGR=DMRs, pvThr=0.05, GAP=100, type="hyper") hyper.DMRs.conso[1:4] ## ----info,echo=TRUE--------------------------------------------------- sessionInfo()