## ----包括= false -----------------------------------------------------------------------------------------------------------------库(Knitr)opts_chunk $ set(tidy = false)## ----加载邮票,消息= false ----------------------------------------------------库(PEPDAT)库(Pepstat)## ------数据 - - - - - - - - - - - - - - - - - - - - - - - -------------------- mapfile <-system.file(“ extdata/mapping.csv”,package =“ pepdat”)dirtoparse <-system.file(“ extdata/gpr_samples”,package =“ pepdat”)pset < - makepeptideset(files = null,path = dirtoparse,mapper.file = mapfile,log = true)## ------------------------------------------ - - - - - - - - - - - - - - - - - - - - - - - - 读.csv(mapfile)## -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- pSetNoCtrl <- makePeptideSet(files = NULL, path = dirToParse, mapping.file = mapFile, log = TRUE, rm.control.list = c(“ jpt-control”,“ ig”,“ cy3”),empty.control.list = c(“空”,“空白控制”))## -------------------= true,图。PlotArayImage(PSET,ARRAY.INDEX = 1)## ----绘制堆放= true = true,fig.width = 7.48,图。Height= 3 --------------------------------------------------------------------------------plotArayResiduals(pset,array.index = 1,smooth = true)## ----创建pep-load-data ------------------------------------------------------------------------------------------------------------------------------------------- peps <- read.csv(system.file("extdata/pep_info.csv", package=“ pepdat”))头(PEPS)## ----创建DB ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- pep_custom <- create_db(peps) ## ----create-db-GR --------------------------------------------------------------------------------------- pep_custom <- create_db(pep_custom) ## ----summarizePeptideSet------------------------------------------------------ psSet <- summarizePeptides(pSet, summary = "mean", position = pep_custom) ## ----normalizeArray----------------------------------------------------------- pnSet <- normalizeArray(psSet) ## ----slidingMean-------------------------------------------------------------- psmSet <- slidingMean(pnSet, width = 9) ## ----slidingMean-splitbyclade------------------------------------------------- psmSetAg <- slidingMean(pnSet, width = 9, split.by.clade = FALSE) ## ----makeCalls---------------------------------------------------------------- calls <- makeCalls(psmSet, freq = TRUE, group = "treatment", cutoff = .1, method = "FDR", verbose = TRUE) ## ----makeCalls-aggregate------------------------------------------------------ callsAg <- makeCalls(psmSetAg, freq = TRUE, group = "treatment", cutoff = .1, method = "FDR") ## ----restab------------------------------------------------------------------- summary <- restab(psmSet, calls) head(summary) ## ----plot-inter, fig.height=4, message=FALSE---------------------------------- library(Pviz) summaryAg <- restab(psmSetAg, callsAg) plot_inter(summaryAg) ## ----plot-clade, fig.height=4------------------------------------------------- plot_clade(summary, clade=c("A", "M", "CRF01"), from = 300, to = 520) ## ----shinyApp, eval = FALSE--------------------------------------------------- # shinyPepStat() ## ----quick-analysis, results='hide', message=FALSE---------------------------- library(pepStat) library(pepDat) mapFile <- system.file("extdata/mapping.csv", package = "pepDat") dirToParse <- system.file("extdata/gpr_samples", package = "pepDat") ps <- makePeptideSet(files = NULL, path = dirToParse, mapping.file = mapFile) data(pep_hxb2) ps <- summarizePeptides(ps, summary = "mean", position = pep_hxb2) ps <- normalizeArray(ps) ps <- slidingMean(ps) calls <- makeCalls(ps, group = "treatment") summary <- restab(ps, calls) ## ----sessionInfo-------------------------------------------------------------- sessionInfo()