# #——包括= FALSE ----------------------------------------------------------- 库(BiocStyle ) ## ----------------------------------------------------------------------------- suppressPackageStartupMessages({库(pipeComp)库(S4Vectors)}) evaluateDEA < -函数(dea,真理= NULL, th = c(0.01, 0.05, 0.1)){# #我们确保列名的dea的标准:dea <- pipeComp:::. homogenizedea (dea) ##在pipeComp中,真相应该与' dea '对象一起传递,因此##我们在这里检索它:if(is.null(truth)) truth <- metadata(dea)$truth dea <- cbind(dea, truth[row.names(dea),]) ##我们消除了真相未知的基因:dea <- dea[!is.na(dea$expected.beta),] ##估计和预期log2 folchanges的比较:res <- c(logFC. beta)。皮尔森=软木(dea dea logFC美元,美元的预期。beta, use = "pairwise"), logFC。斯皮尔曼=软木(dea dea logFC美元,美元的预期。beta, use =" pairwise", method="spearman"), logFC.mad=median(abs(dea$logFC-dea$ expecd.com beta),na.rm=TRUE), ntests =sum(!is.na(dea$PValue) & !is.na(dea$FDR))) ##评估singimportant calls names(th) <- th res2 <- t(vapply(th, FUN. beta)。VALUE=vector(mode="numeric", length=6), FUN=function(x){##对于每个显著性阈值,计算称为=sum(dea$FDR . VALUE)的各种度量