此十二章包括用于手稿的代码,用于差分特征丰度。
pascts = system.file(“ extdata”,“ pasilla_gene_counts.tsv”,package =“ pasilla”,usework = true)pasanno = system.file(“ extdata”,“ pasilla_sample_sample_annotation.csv”,package =“ pasilla =” pasilla =“ pasilla =” pasilla =“ pasilla”,passilla =“ pasilla”,“true)cts = as.matrix(read.csv(pascts,sep =“ \ t”,row.names =“ gene_id”))coldata = read.csv(pasanno,row.names = 1)coldata = coldata = coldata = coldata [,c(“条件”,“ type”)]#创建tidybulk对象counts = cts%>%as_tibble(rownames =“ feature”)%>%pivot_longer(names_to =“ sample”,values_to =“ count”,cols = -feature)%>%left_join(coldata%>%as_tibble(rownames =“ sample”)%>%突变(sample = gsub(“ fb”,“”,sampe)))%>%mutate_if(is.character,as.character,as.factor)
#创建一个具有唯一的原始和归一化计数的TT对象tt_scaled <-tidybulk(计数,示例,功能,计数)%>%gentRegate_duplicates()%>%>%sideen_abement()%>%scale_abundance()pivot_longer(c(c(count,count_scaled),values_to =“ count”,names_to =“ jormanistization”)%>%ggplot(aes(count + 1,group = sample,sample,color = type)) + facet_grid(〜normolisization)) + scale_x_log10()
#降低数据维度,具有任意数量的尺寸tt_mds <-tt_scaled%>%redical_dimensions(method =“ mds”,.dims = 3)#plot all-vs all-vs all-vs all vs all vs all mds dimensions tt_mds%>%>%pivot_sample(pivot_sample()%>%>%gggally:gggally:gggally:gggally:gggally:gggally:gggally:gggally:%>%>%>%:ggpairs(列= 7:9,ggplot2 :: aes(color = condition))
#调整可视化tt_adj <-tt_mds%>%aptim_abundance(〜条件 +类型)#可视化减小尺寸和因子之间的关联tt_mds_adj_mds <-tt_adj%>%>%filter(count_scaled_adjusted_adjusted%>%>%iS.na%>%>%>%>%!%>%#计算调整后计数上的减小尺寸以及降低_二维(.abundance = count_scaled_adjusted,method =“ mds”,.dim = 3)
#数据操作和可视化tt_mds_adj_mds%>%pivot_sample()%>%>%#first级rephaping pivot_longer(contains(“ dim”),names_to =“ dim”,values_to =“ .value” .value“ .value” .value“ .value”)%> dim,c(dim,c(dim,c)“ dim”,“ adj”),sep =“ \\。”)%>%突变(adj = ifelse(adj ==“ y”,“ non”,“ adj”)%>%因子(c(“缩放)“,” adj”)))%>%#二级重塑pivot_longer(c(类型,条件),names_to =“ covar”,values_to =“ wher”)%>%##可视化集成图GGPLOT(y = y =.value,x = covar,fill =`) + geom_boxplot() + facet_grid(adj〜im)
tt_test <-tt_adj%>%test_differential_abundance(〜条件 + type)#ma plot tt_test%>%keep_abement()%>%pivot_transcript()%>%>%#subset data stutate(gienge = FDR = fdr <0.05&abs(logfc)> logfc)> = = logfc)> =2)%>%突变(功能= ifelse(显着,as.Character(feature),na))%>%#plot ggplot(aes(x = logcpm,y = logfc,lagfc,label = feature)) + geom_point(aes(ae)颜色=显着,尺寸=显着,alpha = nige)) + geom_text_repel() + scale_color_manual(values = c(“ black”,“#e11f28”)) + scale_size_discrete(range = c(0,2))
tt_test%>%#选择顶级基因和重塑数据Inner_join(repance((。),PVALUE)%>%DINITDEN(功能)%>%>%>%>%>%##数据的高级重塑数据。#所有三个计数列的形状为两个列:#(i)列名和(ii)这些列的值%>%#这允许绘制绘图ggplot(aes(x = stage,y = count + 1,fill =条件)) + geom_boxplot() + facet_wrap(〜feature) + scale_y_log10()
#heatmap tt_test%>%as_tibble()%>%#选择差异的丰富过滤器(fdr <0.05&abs(logfc)> 2)%>%>%#plot heatmap(功能,sample,count_scaled_adjusted)%>%>%>%>%aDd_tile(条件)%%>%add_tile(类型)