1安装

如果(!requireNamespace("BiocManager", quiet = TRUE)) install.packages("BiocManager")::install("SingleCellMultiModal")

1.1负载

库(SingleCellMultiModal)库(MultiAssayExperiment)

2G&T-seq:单细胞基因组和转录组的并行测序数据

G&T-seq是同一细胞的Picoplex扩增gDNA测序(基因组)和SMARTSeq2扩增cDNA测序(转录组)的组合。有关更多信息,请参见麦考利等人(2015)

2.1下载数据集

用户可以使用默认选项查看可用的数据集

GTseq("mouse_embryo_8_cell", mode = "*", dry.run = TRUE)
## snapshotDate(): 2022-04-19
## rdatadaterremoved ## 1  ## 2 

或者简单地跑步:

GTseq ()
## snapshotDate(): 2022-04-19
## rdatadaterremoved ## 1  ## 2 

2.2数据准备

获取实际数据集:

gts <- GTseq(dry.run = FALSE
一个MultiAssayExperiment对象,包含2个列出的实验,使用用户自定义名称和各自的类。##包含一个长度为2的ExperimentList类对象:## [1]genomic: raggeexperiment with 2366行,112列## [2]transcriptomic: singlecelexperiment with 24029行,112列##功能:## experiments() -获取ExperimentList实例## colData() -主/表型DataFrame ## sampleMap() -样本协调DataFrame ## ' $ ', '[', '[[' -提取colData列,子集,或实验## *格式()-转换为长或宽的DataFrame ## assays() -转换ExperimentList为矩阵的SimpleList ## exportClass() -保存数据到平面文件

2.3探索数据结构

检查用G&T-seq检测的112个小鼠胚胎细胞的可用元数据:

colData (gts)
##数据框架与112行和3列##特征。有机体。Characteristics.sex。## <角色> <角色> ## cell1小家鼠雌性## cell2小家鼠雌性## cell3小家鼠雄性## cell4小家鼠雄性## cell5小家鼠雌性## ... ... ...cell108小家鼠雌性cell109小家鼠雄性cell110小家鼠雄性cell111小家鼠雌性cell112小家鼠雌性##特征。cell.type。##  ## cell1 8_cell_stage_single_..## cell2 8_cell_stage_single_..## cell3 8_cell_stage_single_..## cell4 8_cell_stage_single_..## cell5 8_cell_stage_single_..## ... ... ## cell108 8_cell_stage_single_.. ## cell109 8_cell_stage_single_.. ## cell110 8_cell_stage_single_.. ## cell111 8_cell_stage_single_.. ## cell112 8_cell_stage_single_..

看一看sampleMap

sampleMap (gts)
##数据框架224行3列##分析主colname ## <因子> <字符> <字符> ## 1转录组细胞1 ERR861694 ## 2转录组细胞2 ERR861750 ## 3转录组细胞3 ERR861695 ## 4转录组细胞4 ERR861751 ## 5转录组细胞5 ERR861696 ## ... ... ... ...220基因组细胞108 ERR863164基因组细胞109 ERR863109 222基因组细胞110 ERR863165 223基因组细胞111 ERR863110 224基因组细胞112 ERR863166

2.4复制数据

访问从scDNA-seq检测到的整数拷贝数:

头(化验(gts,“基因组”))[,1:4]
## chr4:145000001-148500000 NA NA NA NA NA NA NA NA NA ## chr4:145000001- 16500000 NA NA NA NA NA NA NA ## chrX:21500001-36000000 NA NA NA NA NA NA NA NA NA

2.5RNA-seq

要从scRNA-seq中获取量化的原始读计数:

Head(测定(gts,“转录组”))[,1:4]
## ensmusg00000000003 0000 ## ensmusg00000000028 11 17 79 94 ## ensmusg00000000031 0000001 0 ## ensmusg00000000049 0000000

有关协议信息,请参见麦考利等人(2016)

3.sessionInfo

sessionInfo ()
## R版本4.2.0 RC (2022-04-19 r82224) ##平台:x86_64-pc-linux-gnu(64位)##运行在Ubuntu 20.04.4 LTS ## ##矩阵产品:默认## BLAS: /home/biocbuild/bbs-3.15-bioc/R/lib/libRblas。/home/biocbuild/bbs-3.15-bioc/R/lib/libRlapack。所以## ## locale: ## [1] LC_CTYPE=en_US。UTF-8 LC_NUMERIC= c# # [3] LC_TIME=en_GB LC_COLLATE= c# # [5] LC_MONETARY=en_US。utf - 8 LC_MESSAGES = en_US。UTF-8 ## [7] LC_PAPER=en_US。UTF-8 LC_NAME= c# # [9] LC_ADDRESS=C lc_phone = c# # [11] LC_MEASUREMENT=en_US。UTF-8 LC_IDENTIFICATION=C ## ##附加的基本包:## [1]stats4 stats graphics grDevices utils datasets methods ##[8]基础## ##其他附加包:[1] SingleCellMultiModal_1.8.0 MultiAssayExperiment_1.22.0 ## [5] SummarizedExperiment_1.26.0 Biobase_2.56.0 ## [7] GenomicRanges_1.48.0 GenomeInfoDb_1.32.0 ## [9] IRanges_2.30.0 S4Vectors_0.34.0 ## [11] BiocGenerics_0.42.0 MatrixGenerics_1.8.0 ## [13] matrixStats_0.62.0 BiocStyle_2.24.0 ## ##通过命名空间加载(并且没有附加):# # # # [1] bitops_1.0-7 bit64_4.0.5 [3] filelock_1.0.2 httr_1.4.2 # # [5] tools_4.2.0 bslib_0.3.1 # # [7] utf8_1.2.2 R6_2.5.1 # # [9] HDF5Array_1.24.0 DBI_1.1.2 # # [11] rhdf5filters_1.8.0 withr_2.5.0 # # [13] tidyselect_1.1.2 bit_4.0.4 # # [15] curl_4.3.2 compiler_4.2.0 # # [17] cli_3.3.0 formatR_1.12 # # [19] DelayedArray_0.22.0 bookdown_0.26 # # [21] sass_0.4.1 rappdirs_0.3.3 # # [23] stringr_1.4.0 digest_0.6.29 # # [25] SpatialExperiment_1.6.0 R.utils_2.11.0 # # [27] rmarkdown_2.14 XVector_0.36.0 # # [29]pkgconfig_2.0.3 htmltools_0.5.2 ## [31] sparseMatrixStats_1.8.0 limma_3.52.0 ## [33] dbplyr_2.1.1 fastmap_1.1.0 ## [35] rlang_1.0.2 RSQLite_2.2.12 ## [37] shiny_1.7.1 DelayedMatrixStats_1.18.0 ## [39] jquerylib_0.1.4 generics_0.1.2 ## [41] jsonlite_1.8.0 BiocParallel_1.30.0 ## [43] R.oo_1.24.0 dplyr_1.0.8 ## [45] RCurl_1.98-1.6 magrittr_2.0.3 ## [47] scuttle_1.6.0 GenomeInfoDbData_1.2.8 ## [49] Matrix_1.4-1 Rcpp_1.0.8.3 ## [51] Rhdf5lib_1.18.0 fansi_1.0.3 ## [53] R.methodsS3_1.8.1 lifecycle_1.0.1 ## [55] edgeR_3.38.0 stringi_1.7.6 ## [57] yaml_2.3.5 zlibbioc_1.42.0 ## [59] rhdf5_2.40.0 BiocFileCache_2.4.0 ## [61] AnnotationHub_3.4.0 grid_4.2.0 ## [63] blob_1.2.3 dqrng_0.3.0 ## [65] parallel_4.2.0 promises_1.2.0.1 ## [67] ExperimentHub_2.4.0 crayon_1.5.1 ## [69] lattice_0.20-45 beachmat_2.12.0 ## [71] Biostrings_2.64.0 KEGGREST_1.36.0 ## [73] magick_2.7.3 locfit_1.5-9.5 ## [75] knitr_1.39 pillar_1.7.0 ## [77] rjson_0.2.21 glue_1.6.2 ## [79] BiocVersion_3.15.2 evaluate_0.15 ## [81] BiocManager_1.30.17 vctrs_0.4.1 ## [83] png_0.1-7 httpuv_1.6.5 ## [85] purrr_0.3.4 assertthat_0.2.1 ## [87] cachem_1.0.6 xfun_0.30 ## [89] DropletUtils_1.16.0 mime_0.12 ## [91] xtable_1.8-4 later_1.3.0 ## [93] tibble_3.1.6 AnnotationDbi_1.58.0 ## [95] memoise_2.0.1 ellipsis_0.3.2 ## [97] interactiveDisplayBase_1.34.0

参考文献

麦考利,Iain C, Wilfried Haerty, Parveen Kumar,李杨一,胡晓明,Mabel J Teng, Mubeen Goolam,等。2015。G&T-seq:单细胞基因组和转录组的平行测序Nat方法。12(6): 519-22。

麦考利,伊恩·C,梅布尔·J·滕,威尔弗里德·哈尔蒂,帕文·库马尔,克里斯·P·庞廷,蒂埃里·沃特,2016。“利用G&T-seq分离和平行测序单细胞基因组和转录组”Protoc Nat。11(11): 2081-2103。